

4.11 Answers

Problem Set Sample Solutions

- 1. For each of the following, write the inverse of the function given.
 - $f = \{(1,3), (2,15), (3,8), (4,-2), (5,0)\}$

$$f^{-1} = \{(3,1), (15,2), (8,3), (-2,4), (0,5)\}$$

 $g = \{(0,5), (2,10), (4,15), (6,20)\}$

$$g^{-1} = \{(5,0), (10,2), (15,4), (20,6)\}$$

 $h = \{(1,5), (2,25), (3,125), (4,625)\}$

$$h^{-1} = \{(5,1), (25,2), (125,3), (625,4)\}$$

d. 1 2 3 4 \boldsymbol{x} 27 f(x)3 12 48

·	·	p	·	
x	3	12	27	48
$f^{-1}(x)$	1	2	3	4

-1 0 1 2 e. 12 3 6 24 g(x)

***************************************	X	3	6	12	24
	$g^{-1}(x)$	1	0	1	2

f. x1 10 100 1,000 h(x)0 1 2

x	. 0	1	2	3
$h^{-1}(x)$	1	10	100	1,000

$$y = \frac{1}{2}x$$

$$y = 3x$$

y = x - 3

$$y = x + 3$$

Lesson 18:

j.
$$y = -\frac{2}{3}x + 5$$

$$y = -\frac{3}{2}x + \frac{15}{2}$$

k.
$$2x - 5y = 1$$

$$2y - 5x = 1$$

1.
$$-3x + 7y = 14$$

$$-3y + 7x = 14$$

m.
$$y = \frac{1}{3}(x-9)^3$$

$$y = \sqrt[3]{3x} + 9$$

n.
$$y = \frac{5}{3x - 4} x \neq \frac{4}{3}$$

$$y = \frac{5}{3x} + \sqrt{\frac{4}{3}}$$

o.
$$y = 2x^7 + 1$$

$$y = \sqrt[7]{\frac{1}{2}x - \frac{1}{2}}$$

$$\mathbf{p.} \quad \mathbf{y} = \sqrt[5]{3}$$

$$y = x^5$$

$$q. \int y = \frac{x+1}{x-1}, x \neq 1$$

$$x+1$$

$$y = \frac{x+1}{x-1}$$

2. For each part in Problem 1, state the domain, *D*, and range, *R*, of the inverse function.

a.
$$D = \{-2, 0, 3, 8, 15\}$$

$$R = \{0, 1, 2, 3, 4, 5\}$$

b.
$$D = \{5, 10, 15, 20\}$$

$$R = \{0, 2, 4, 6\}$$

c.
$$D = \{5, 25, 125, 625\}$$

$$R = \{1, 2, 3, 4\}$$

d.
$$D = \{3, 12, 27, 48\}$$

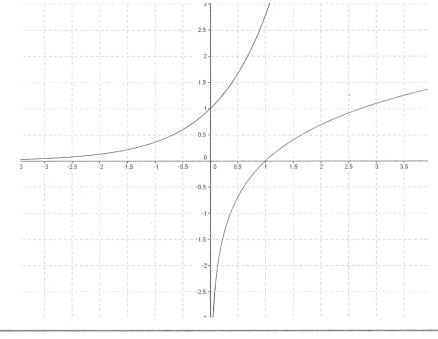
 $R = \{1, 2, 3, 4\}$

g.

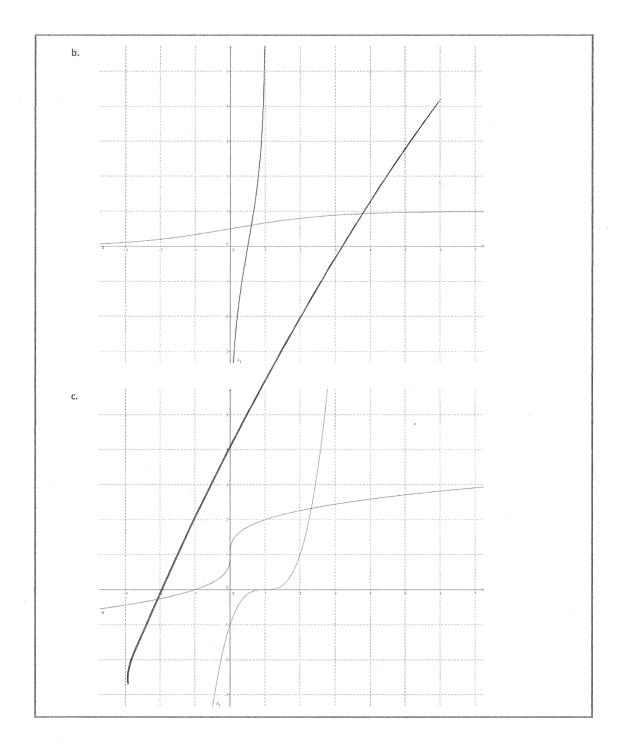
$$D = \{3, 6, 12, 24\}$$
$$R = \{-1, 0, 1, 2\}$$

f.
$$D = \{0, 1, 2, 3\}$$

 $R = \{1, 10, 100, 1000\}$


Lesson 18:

- i. Both domain and range are all real numbers.
- j. Both domain and range are all real numbers
- k. Both domain and range are all real numbers.
- I. Both domain and range are all real numbers.
- m. Both domain and range are all real numbers.
- n. The domain is all real numbers except x=0, and the range is all real numbers except $y=\frac{4}{3}$.
- o. Both domain and range are all real numbers.
- p. Both domain and range are all real numbers.
- q. Both domain and range are all real numbers except 1.
- 3. Sketch the graph of the inverse function for each of the following functions:


d.

Lesson 18:

Lesson Summary

INVERTIBLE FUNCTION: Let f be a function whose domain is the set X and whose image (range) is the set Y. Then, f is invertible if there exists a function g with domain Y and image (range) X such that f and gsatisfy the property:

For all x in X and y in Y, f(x) = y if and only if g(y) = x.

The function g is called the *inverse* of f.

- If two functions whose domain and range are a subset of the real numbers are inverses, then their graphs are reflections of each other across the diagonal line given by y = x in the Cartesian plane.
- If f and g are inverses of each other, then:
 - The domain of f is the same set as the range of g.
 - The range of f is the same set as the domain of g.
- The inverse of a function f is denoted f^{-1} .
- In general, to find the formula for an inverse function g of a given function f:
 - Write y = f(x) using the formula for f.
 - Interchange the symbols x and y to get x = f(y).
 - Solve the equation for y to write y as an expression in x.
 - Then, the formula for f^{-1} is the expression in x found in the previous step.

Problem Set

For each of the following, write the inverse of the function given.

a.
$$f = \{(1,7), (-22,15), (3,8), (4,-2), (5,0)\}$$

b.
$$g = \{(0,5), (2,10), (4,15), (6,20)\}$$

c.
$$h = \{(1,5), (2,25), (3,125), (4,625)\}$$

d.	x	1	2	9	24
	f(x)	0	12	27	4
e.	x		0	1	2
	g(x)	3	6	12	24
f.	x	1	10	100	1,000
	h(x)	0	₁	2	3

g.
$$y = 2x$$

h.
$$y = \frac{1}{3}x$$

i.
$$y = x + 6$$

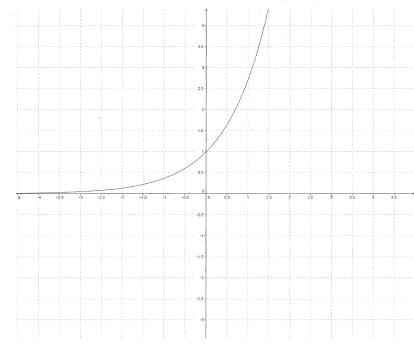
j.
$$y = -\frac{2}{9}x + 7$$

Lesson 18:

Inverse Functions

(cc) BY-NC-SA

y (x+2)=1


k.
$$3x - 5y = 2$$

I.
$$-3x + 7y = 14$$

m.
$$y = \frac{1}{3}(x-9)^3$$

Sketch the graph of the inverse function for each of the following functions:

Find the inverse of each function.

9)
$$h(x) = \sqrt[3]{x} - 3$$

11)
$$h(x) = 2x^3 + 3$$

$$x=2y^3+3$$

$$x-3 = y^3$$

$$3\sqrt{x-3} = y$$

10)
$$g(x) = \frac{1}{x} - 2$$

12)
$$g(x) = -4x + 1$$

$$\frac{x-1}{-4}=Y$$

EUREKA

Lesson 18:

Challenge! Find the inverse!

(i) If
$$f(x) = \frac{4x-3}{2x+1}$$
, find $f^{-1}(x)$.

1f f(x) =
$$\frac{5}{6}$$
x - $\frac{3}{4}$, find f⁻¹(x).

$$(3.) If f(x) = -(x+2)^2 - 1, find f^{-1}(x).$$

(4) If
$$f(x) = -3x + 11$$
, find $f^{-1}(x)$.

5.) If
$$f(x) = \sqrt[5]{x+2} - 3$$
, find $f^{-1}(x)$.

6.) If
$$f(x) = \frac{2x-5}{3}$$
, find $f^{-1}(x)$.

$$(3.) \ \ Y = -(x+2)^{2} - 1$$

$$x = -(y+2)^{2} - 1$$

$$x+1 = -(y+2)^{2}$$

$$-(x+1) = (y+2)^{2}$$

$$\sqrt{-(x+1)} = y+2$$

$$\sqrt{-(x+1)} - \lambda = y$$

1.
$$y = \frac{4x-3}{2x+1}$$
 $x = 4y-3$
 $2y+1$
 $(2y+1)x = 4y-3$
 $2yx+1x = 4y-3$
 $x+3 = 4y-2yx$
 $x+3 = y (4-2x)$
 $\frac{x+3}{4-2x} = y$

(2.)
$$y = \frac{5}{6}x - \frac{3}{4}$$

 $x = \frac{5}{6}y - \frac{3}{4}$
 $x + \frac{3}{4} = \frac{5}{6}y$
 $\frac{6}{5}(x + \frac{3}{4}) = y$

(4.)
$$y = -3x + 11$$

 $x = -3y + 11$
 $x = -3y$
 $\frac{x - 11}{-3} = y$

$$5. \quad \chi = 5 \times + 2 - 3$$

$$\chi + 3 = 5 \times + 2$$

$$(\chi + 3)^{5} = \chi + 2$$

$$(\chi + 3)^{5} - 2 = \gamma$$

6.)
$$Y = \frac{2x-5}{3}$$
 $X = \frac{2y-5}{3}$
 $3x = \frac{2y-5}{3}$
 $3x+5=2y$
 $\frac{3x+5}{2} = \frac{2y-5}{3}$