9.2 Practice Solutions

\#1

The first thing we'll need here are the following two derivatives.

$$
\frac{d x}{d t}=12 t^{\frac{1}{2}} \quad \frac{d y}{d t}=-\frac{3}{2}(8-t)^{\frac{1}{2}}
$$

Hide Step 2 *
We'll need the $d s$ for this problem.

$$
d s=\sqrt{\left[12 t^{\frac{1}{2}}\right]^{2}+\left[-\frac{3}{2}(8-t)^{\frac{1}{2}}\right]^{2}} d t=\sqrt{144 t+\frac{9}{4}(8-t)} d t=\sqrt{\frac{567}{4} t+18} d t
$$

Hide Step 37
The integral for the arc length is then,

$$
L=\int d s=\int_{0}^{4} \sqrt{\frac{567}{4} t+18} d t
$$

\#2

The first thing we'll need here are the following two derivatives.

$$
\frac{d x}{d t}=3 \quad \frac{d y}{d t}=-2 t
$$

Hide Step $2-$
We'll need the $d s$ for this problem.

$$
d s=\sqrt{[3]^{2}+[-2 t]^{2}} d t=\sqrt{9+4 t^{2}} d t
$$

Hide Step $3-$
The integral for the arc length is then,

$$
L=\int d s=\int_{-2}^{0} \sqrt{9+4 t^{2}} d t
$$

The first thing we'll need here are the following two derivatives. also gives us a chain rule for the second part of the product rule

$$
\frac{d x}{d t}=2 t \quad \frac{d y}{d t}=\mathbf{e}^{t} \sin (2 t)+2 \mathbf{e}^{t} \cos (2 t)
$$

Hide Step 2 *
We'll need the $d s$ for this problem.

$$
d s=\sqrt{[2 t]^{2}+\left[\mathrm{e}^{t} \sin (2 t)+2 \mathrm{e}^{t} \cos (2 t)\right]^{2}} d t=\sqrt{4 t^{2}+\left[\mathrm{e}^{t} \sin (2 t)+2 \mathrm{e}^{t} \cos (2 t)\right]^{2}} d t
$$

Hide Step 3 -
The integral for the arc length is then,

$$
L=\int d s=\int_{0}^{3} \sqrt{4 t^{2}+\left[\mathrm{e}^{t} \sin (2 t)+2 \mathrm{e}^{t} \cos (2 t)\right]^{2}} d t
$$

This is a double chain of $\cos ^{3}(2 t)$. The third power is most outside, then the $\cos \left(_\right)$, then the 2 t . The -6 comes from the 3 of the power, the negative of the Chain rule gives the cosine derivative, and the 2 of the $2 t$ derivative. negative sign
\#4
The first thing we'll need here are the following two derivatives.

$$
\frac{d x}{d t}=-6 \cos ^{2}(2 t) \sin (2 t) \quad \frac{d y}{d t}=-2 t \cos \left(1-t^{2}\right)
$$

Hide Step 2 -
We'll need the $d s$ for this problem.

$$
\begin{aligned}
d s & =\sqrt{\left[-6 \cos ^{2}(2 t) \sin (2 t)\right]^{2}+\left[-2 t \cos \left(1-t^{2}\right)\right]^{2}} d t \\
& =\sqrt{36 \cos ^{4}(2 t) \sin ^{2}(2 t)+4 t^{2} \cos ^{2}\left(1-t^{2}\right)} d t
\end{aligned}
$$

Hide Step 37

The integral for the arc length is then,

$$
L=\int d s=\int_{-\frac{3}{2}}^{0} \sqrt{36 \cos ^{4}(2 t) \sin ^{2}(2 t)+4 t^{2} \cos ^{2}\left(1-t^{2}\right)} d t
$$

