The Accumulation Function - Homework

1. Let $F(x) = \int f(t) dt$ where the graph of f(x) is above (the graph consists of lines and a quarter circle) 1-14-11-24+

a. Complete the chart									6-(1")-2411		
	X	0	1	2	3	4	5	7	8]	
	F(x)	0	ろ	12	4	S	6	みれ	-1+11 =	$1-\pi$	
	F'(x)	7	2	1	0	2	Ô	- a	-4	1	

b. On what subintervals of [0, 8] is Fincreasing? Decreasing? Justify your answer.

(5,8) F decreasing since (0,5) F increasing since F'(x)=f(x) is positive FI(X)=f(X) is negative

c. Where in the interval [0, 8] does Fachieve its minimum value? What is the minimum value? Justify answer. compare values at end points @ Critical pts (where F'(X)=f(X)=0). absmin at x=0

F(3)=4, F(5)=6, $F(8)=\pi-1$ F(0)=0

Where in the interval [0, 8] does F achieve its maximum value? What is the maximum value? Justify answer. Tabs max at x=5. F(5)=6). Closed interval test (compare values of F(x) at endpts orifical points

e. Find the concavity of F and any inflection points. Justify answers.

F(x) concave up when F(x)=f(x) is increasing (3,4).

F(x) concave down when F'(x)=f(x) is decreasing (1,3) U(4,8)

f. Sketch a rough graph of F(x)

pts of inflection: (3,4)

(4,5) x values when F(x) D's concavity of y= F(x) value.

Stu Schwartz

a. Complete the chart

X	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
F(x)	T-1	π-4	π	2211	0	2 - 2	-π	七一丁	2-11	6.5-11	17-01	9-11	6-11
F'(x)	l	0,5	0	2-1.8	-2	≈-1.8	Ö	Ì	2	7	Ö	- 3	-4

b. On what subintervals of $\begin{bmatrix} -4,8 \end{bmatrix}$ is F increasing? Decreasing? FIXI=f(X) F(x) increasing when F(x)=f(x) positive (~4,-270(2,6); F(x) decreasing when negative: (~2,2) v (6,8) c. Where in the interval [-4,8] does F achieve its minimum value? What is the minimum value? Justify answer. $X \setminus F(X)$ creek end pts and where FI(x)=f(x) changes from negative to F(X) has min at d. Where in the interval [-4,8] does F achieve its maximum value? What is the maximum value? Iustify answer. 8 | 6-π F(x) has max at check endpoints and where F'(X)=f(X) changes from positive to negative e. On what subintervals of [-4,8] is F concave up and concave down? Find its inflection points. Justity $\pi - 1$ pt of inflection (0, F(0))=(0,0)

Figure down when F'(x)=f(x) F concave up when

decreasing (-4,0)U(5,8)

(5, F(51) = (5, 6,5-17)

-

f. Sketch a rough graph of F(x)

