## AP<sup>®</sup> CALCULUS BC 2007 SCORING GUIDELINES

### **Question 1**

Let *R* be the region in the first and second quadrants bounded above by the graph of  $y = \frac{20}{1 + x^2}$  and

below by the horizontal line y = 2.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is rotated about the x-axis.
- (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the *x*-axis are semicircles. Find the volume of this solid.

$$\frac{20}{1+x^2} = 2 \text{ when } x = \pm 3$$
(a) Area =  $\int_{-3}^{3} \left(\frac{20}{1+x^2} - 2\right) dx = 37.961 \text{ or } 37.962$ 
(b) Volume =  $\pi \int_{-3}^{3} \left(\left(\frac{20}{1+x^2}\right)^2 - 2^2\right) dx = 1871.190$ 
(c) Volume =  $\frac{\pi}{2} \int_{-3}^{3} \left(\frac{1}{2}\left(\frac{20}{1+x^2} - 2\right)\right)^2 dx$   
=  $\frac{\pi}{8} \int_{-3}^{3} \left(\frac{20}{1+x^2} - 2\right)^2 dx = 174.268$ 
(1) : correct limits in an integral in (a), (b), or (c)
(c) Volume =  $\frac{\pi}{2} \int_{-3}^{3} \left(\frac{1}{2}\left(\frac{20}{1+x^2} - 2\right)\right)^2 dx$   
=  $\frac{\pi}{8} \int_{-3}^{3} \left(\frac{20}{1+x^2} - 2\right)^2 dx = 174.268$ 

# AP<sup>®</sup> CALCULUS AB 2013 SCORING GUIDELINES

#### **Question 5**

Let  $f(x) = 2x^2 - 6x + 4$  and  $g(x) = 4\cos(\frac{1}{4}\pi x)$ . Let R be the region

bounded by the graphs of f and g, as shown in the figure above.

- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 4.



(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.

(a) Area 
$$= \int_{0}^{2} [g(x) - f(x)] dx$$
  
 $= \int_{0}^{2} [4\cos(\frac{\pi}{4}x) - (2x^{2} - 6x + 4)] dx$   
 $= \left[4 \cdot \frac{4}{\pi} \sin(\frac{\pi}{4}x) - (\frac{2x^{3}}{3} - 3x^{2} + 4x)\right]_{0}^{2}$   
 $= \frac{16}{\pi} - (\frac{16}{3} - 12 + 8) = \frac{16}{\pi} - \frac{4}{3}$   
(b) Volume  $= \pi \int_{0}^{2} [(4 - f(x))^{2} - (4 - g(x))^{2}] dx$   
 $= \pi \int_{0}^{2} [(4 - (2x^{2} - 6x + 4))^{2} - (4 - 4\cos(\frac{\pi}{4}x))^{2}] dx$   
(c) Volume  $= \int_{0}^{2} [g(x) - f(x)]^{2} dx$   
 $= \int_{0}^{2} [4\cos(\frac{\pi}{4}x) - (2x^{2} - 6x + 4)]^{2} dx$   
 $= \int_{0}^{2} [4\cos(\frac{\pi}{4}x) - (2x^{2} - 6x + 4)]^{2} dx$   
 $2: \{1: \text{ integrand} \\ 1: \text{ limits and constant} \}$ 

### AP<sup>®</sup> CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES



The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by  $r = \frac{1}{20}(3+h^2)$ , where  $0 \le h \le 10$ . The units of r and h are inches.

- (a) Find the average value of the radius of the funnel.
- (b) Find the volume of the funnel.
- (c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is h = 3 inches, the radius of the surface of the liquid is decreasing at a rate of  $\frac{1}{5}$  inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

(a) Average radius 
$$= \frac{1}{10} \int_{0}^{10} \frac{1}{20} (3+h^2) dh = \frac{1}{200} \left[ 3h + \frac{h^3}{3} \right]_{0}^{10}$$
  
 $= \frac{1}{200} \left( \left( 30 + \frac{1000}{3} \right) - 0 \right) = \frac{109}{60}$  in  
(b) Volume  $= \pi \int_{0}^{10} \left( \left( \frac{1}{20} \right) (3+h^2) \right)^2 dh = \frac{\pi}{400} \int_{0}^{10} (9+6h^2+h^4) dh$   
 $= \frac{\pi}{400} \left[ 9h + 2h^3 + \frac{h^5}{5} \right]_{0}^{10}$   
 $= \frac{\pi}{400} \left( \left( 90 + 2000 + \frac{100000}{5} \right) - 0 \right) = \frac{2209\pi}{40}$  in<sup>3</sup>  
(c)  $\frac{dr}{dt} = \frac{1}{20} (2h) \frac{dh}{dt}$   
 $-\frac{1}{5} = \frac{3}{10} \frac{dh}{dt}$   
 $\frac{dh}{dt} = -\frac{1}{5} \cdot \frac{10}{3} = -\frac{2}{3}$  in/sec  
 $= \frac{\pi}{400} \left( \frac{1}{3} + \frac{1}{3} +$ 

© 2016 The College Board. Visit the College Board on the Web: www.collegeboard.org.

# AP<sup>®</sup> CALCULUS AB 2011 SCORING GUIDELINES

### **Question 3**

1-

0

R

 $\rightarrow x$ 

Let R be the region in the first quadrant enclosed by the graphs of  $f(x) = 8x^3$ and  $g(x) = \sin(\pi x)$ , as shown in the figure above.

- (a) Write an equation for the line tangent to the graph of f at  $x = \frac{1}{2}$ .
- (b) Find the area of *R*.
- (c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y = 1.

(a) 
$$f(\frac{1}{2}) = 1$$
  
 $f'(x) = 24x^2$ , so  $f'(\frac{1}{2}) = 6$   
An equation for the tangent line is  $y = 1 + 6\left(x - \frac{1}{2}\right)$ .  
(b) Area  $= \int_0^{1/2} (g(x) - f(x)) dx$   
 $= \int_0^{1/2} (\sin(\pi x) - 8x^3) dx$   
 $= \left[ -\frac{1}{\pi} \cos(\pi x) - 2x^4 \right]_{x=0}^{x=1/2}$   
 $= -\frac{1}{8} + \frac{1}{\pi}$   
(c)  $\pi \int_0^{1/2} ((1 - f(x))^2 - (1 - g(x))^2) dx$   
 $= \pi \int_0^{1/2} ((1 - 8x^3)^2 - (1 - \sin(\pi x))^2) dx$   
2 :  $\begin{cases} 1 : integrand \\ 2 : antiderivative \\ 1 : answer \end{cases}$   
3 :  $\begin{cases} 1 : limits and constant \\ 2 : integrand \end{cases}$ 

### AP<sup>®</sup> CALCULUS BC 2007 SCORING GUIDELINES (Form B)

### **Question 1**

Let *R* be the region bounded by the graph of  $y = e^{2x-x^2}$  and the horizontal line y = 2, and let *S* be the region bounded by the graph of  $y = e^{2x-x^2}$  and the horizontal lines y = 1 and y = 2, as shown above. (a) Find the area of *R*.

- (b) Find the area of *S*.
- (c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 1.



$$e^{2x-x^2} = 2$$
 when  $x = 0.446057, 1.553943$   
Let  $P = 0.446057$  and  $Q = 1.553943$ 

(a) Area of 
$$R = \int_{P}^{Q} \left( e^{2x - x^2} - 2 \right) dx = 0.514$$

(b) 
$$e^{2x-x^2} = 1$$
 when  $x = 0, 2$   
Area of  $S = \int_0^2 (e^{2x-x^2} - 1) dx$  - Area

OR  

$$\int_{0}^{P} \left( e^{2x - x^{2}} - 1 \right) dx + (Q - P) \cdot 1 + \int_{Q}^{2} \left( e^{2x - x^{2}} - 1 \right) dx$$

$$= 0.219064 + 1.107886 + 0.219064 = 1.546$$

= 2.06016 -Area of R = 1.546

of R

1 : integrand
 1 : limits

1 : answer

1 : integrand

1 : limits

3 :

3 :

(c) Volume = 
$$\pi \int_{P}^{Q} \left( \left( e^{2x - x^2} - 1 \right)^2 - (2 - 1)^2 \right) dx$$

3 :  $\begin{cases} 2 : integrand \\ 1 : constant and limits \end{cases}$ 

© 2007 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

# AP® CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

#### **Question 1**

|                                                                                                                                                                                                                                                                                                               | 1 : units in parts (a), (c), and (d)                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| (a) Volume = $\int_0^{10} A(h) dh$<br>$\approx (2-0) \cdot A(0) + (5-2) \cdot A(2) + (10-5) \cdot A(5)$<br>$= 2 \cdot 50.3 + 3 \cdot 14.4 + 5 \cdot 6.5$<br>= 176.3 cubic feet                                                                                                                                | 2 : $\begin{cases} 1 : left Riemann sum \\ 1 : approximation \end{cases}$ |
| (b) The approximation in part (a) is an overestimate because a left Riemann<br>sum is used and A is decreasing.                                                                                                                                                                                               | 1 : overestimate with reason                                              |
| (c) $\int_0^{10} f(h) dh = 101.325338$<br>The volume is 101.325 cubic feet.                                                                                                                                                                                                                                   | $2: \begin{cases} 1: integral \\ 1: answer \end{cases}$                   |
| (d) Using the model, $V(h) = \int_0^h f(x) dx$ .<br>$\frac{dV}{dt}\Big _{h=5} = \left[\frac{dV}{dh} \cdot \frac{dh}{dt}\right]_{h=5}$ $= \left[f(h) \cdot \frac{dh}{dt}\right]_{h=5}$ $= f(5) \cdot 0.26 = 1.694419$ When $h = 5$ , the volume of water is changing at a rate of 1.694 cubic feet per minute. | $3: \begin{cases} 2: \frac{dV}{dt} \\ 1: \text{ answer} \end{cases}$      |
|                                                                                                                                                                                                                                                                                                               |                                                                           |