AP[®] CALCULUS BC 2006 SCORING GUIDELINES

Question 4

t (seconds)	0	10	20	30	40	50	60	70	80
v(t) (feet per second)	5	14	22	29	35	40	44	47	49

Rocket *A* has positive velocity v(t) after being launched upward from an initial height of 0 feet at time t = 0 seconds. The velocity of the rocket is recorded for selected values of *t* over the interval $0 \le t \le 80$ seconds, as shown in the table above.

- (a) Find the average acceleration of rocket A over the time interval $0 \le t \le 80$ seconds. Indicate units of measure.
- (b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) dt$ in terms of the rocket's flight. Use a midpoint

Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) dt$.

(c) Rocket *B* is launched upward with an acceleration of $a(t) = \frac{3}{\sqrt{t+1}}$ feet per second per second. At time t = 0 seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time t = 80 seconds? Explain your answer.

(a)	Average acceleration of rocket A is		1 : answer		
	$\frac{v(80) - v(0)}{80 - 0} = \frac{49 - 5}{80} = \frac{11}{20} \text{ ft/sec}^2$				
(b)	Since the velocity is positive, $\int_{10}^{70} v(t) dt$ represents the distance, in feet, traveled by rocket <i>A</i> from $t = 10$ seconds to $t = 70$ seconds.	3: <	$\begin{cases} 1 : explanation \\ 1 : uses v(20), v(40), v(60) \\ 1 : value \end{cases}$		
	A midpoint Riemann sum is 20[v(20) + v(40) + v(60)] = 20[22 + 35 + 44] = 2020 ft				
(c)	Let $v_B(t)$ be the velocity of rocket <i>B</i> at time <i>t</i> . $v_B(t) = \int \frac{3}{\sqrt{t+1}} dt = 6\sqrt{t+1} + C$ $2 = v_B(0) = 6 + C$ $v_B(t) = 6\sqrt{t+1} - 4$ $v_B(80) = 50 > 49 = v(80)$	4: <	$\begin{cases} 1: 6\sqrt{t+1} \\ 1: \text{ constant of integration} \\ 1: \text{ uses initial condition} \\ 1: \text{ finds } v_B(80), \text{ compares to } v(80), \\ \text{ and draws a conclusion} \end{cases}$		
	Rocket <i>B</i> is traveling faster at time $t = 80$ seconds.				
Units of ft/sec^2 in (a) and ft in (b)		1 : units in (a) and (b)			

© 2006 The College Board. All rights reserved.

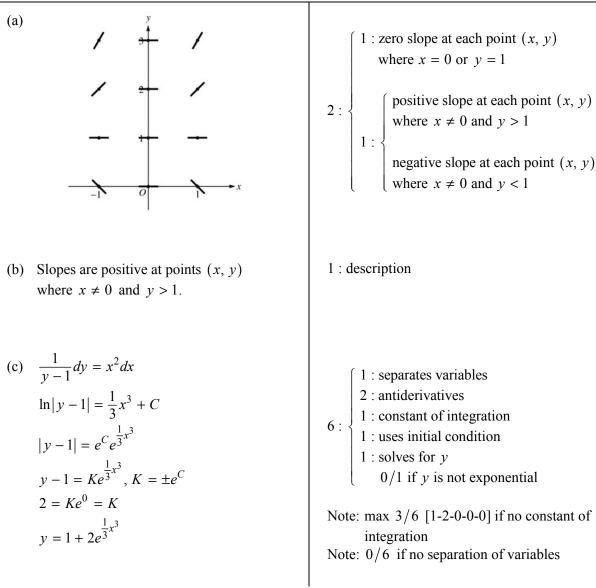
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

AP[®] CALCULUS AB 2004 SCORING GUIDELINES

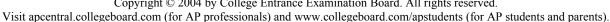
Question 6

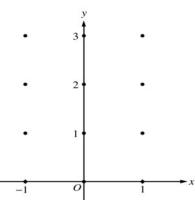
Consider the differential equation $\frac{dy}{dx} = x^2(y-1)$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the pink test booklet.)
- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane. Describe all points in the *xy*-plane for which the slopes are positive.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 3.



Copyright © 2004 by College Entrance Examination Board. All rights reserved.





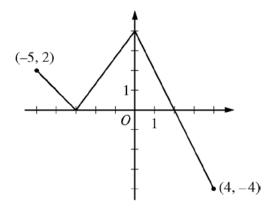
AP[®] CALCULUS AB/CALCULUS BC 2014 SCORING GUIDELINES

Question 3

The function f is defined on the closed interval [-5, 4]. The graph of f consists of three line segments and is shown in the figure above.

Let g be the function defined by $g(x) = \int_{-3}^{x} f(t) dt$.

- (a) Find g(3).
- (b) On what open intervals contained in -5 < x < 4 is the graph of g both increasing and concave down? Give a reason for your answer.
- (c) The function h is defined by $h(x) = \frac{g(x)}{5x}$. Find h'(3).
- (d) The function p is defined by $p(x) = f(x^2 x)$. Find the slope of the line tangent to the graph of p at the point where x = -1.



(a) $g(3) = \int_{-3}^{3} f(t) dt = 6 + 4 - 1 = 9$	1 : answer
 (b) g'(x) = f(x) The graph of g is increasing and concave down on the intervals -5 < x < -3 and 0 < x < 2 because g' = f is positive and decreasing on these intervals. 	$2: \begin{cases} 1 : answer \\ 1 : reason \end{cases}$
(c) $h'(x) = \frac{5xg'(x) - g(x)5}{(5x)^2} = \frac{5xg'(x) - 5g(x)}{25x^2}$ $h'(3) = \frac{(5)(3)g'(3) - 5g(3)}{25 \cdot 3^2}$ $= \frac{15(-2) - 5(9)}{225} = \frac{-75}{225} = -\frac{1}{3}$	$3: \begin{cases} 2: h'(x) \\ 1: \text{ answer} \end{cases}$
(d) $p'(x) = f'(x^2 - x)(2x - 1)$ p'(-1) = f'(2)(-3) = (-2)(-3) = 6	$3: \begin{cases} 2: p'(x) \\ 1: \text{ answer} \end{cases}$

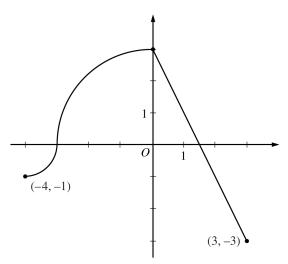
AP[®] CALCULUS AB 2011 SCORING GUIDELINES

Question 4

The continuous function *f* is defined on the interval $-4 \le x \le 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.

Let
$$g(x) = 2x + \int_0^x f(t) dt$$
.

- (a) Find g(-3). Find g'(x) and evaluate g'(-3).
- (b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \le x \le 3$. Justify your answer.
- (c) Find all values of x on the interval -4 < x < 3 for which the graph of g has a point of inflection. Give a reason for your answer.



Graph of f

(d) Find the average rate of change of f on the interval $-4 \le x \le 3$. There is no point c, -4 < c < 3, for which f'(c) is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.

(a)	$g(-3) = 2(-3) + \int_0^{-3} f(t) dt = -6 - \frac{9\pi}{4}$ $g'(x) = 2 + f(x)$ $g'(-3) = 2 + f(-3) = 2$	$3: \begin{cases} 1: g(-3) \\ 1: g'(x) \\ 1: g'(-3) \end{cases}$
(b)	$g'(x) = 0$ when $f(x) = -2$. This occurs at $x = \frac{5}{2}$. $g'(x) > 0$ for $-4 < x < \frac{5}{2}$ and $g'(x) < 0$ for $\frac{5}{2} < x < 3$. Therefore g has an absolute maximum at $x = \frac{5}{2}$.	3 : $\begin{cases} 1 : \text{ considers } g'(x) = 0\\ 1 : \text{ identifies interior candidate}\\ 1 : \text{ answer with justification} \end{cases}$
(c)	g''(x) = f'(x) changes sign only at $x = 0$. Thus the graph of g has a point of inflection at $x = 0$.	1 : answer with reason
(d)	The average rate of change of f on the interval $-4 \le x \le 3$ is $\frac{f(3) - f(-4)}{3 - (-4)} = -\frac{2}{7}$. To apply the Mean Value Theorem, f must be differentiable at each point in the interval $-4 < x < 3$. However, f is not differentiable at $x = -3$ and $x = 0$.	2 : { 1 : average rate of change 1 : explanation