AP ${ }^{\circledR}$ CALCULUS BC 2006 SCORING GUIDELINES

Question 4

t (seconds)	0	10	20	30	40	50	60	70	80
$v(t)$ (feet per second)	5	14	22	29	35	40	44	47	49

Rocket A has positive velocity $v(t)$ after being launched upward from an initial height of 0 feet at time $t=0$ seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \leq t \leq 80$ seconds, as shown in the table above.
(a) Find the average acceleration of rocket A over the time interval $0 \leq t \leq 80$ seconds. Indicate units of measure.
(b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) d t$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) d t$.
(c) Rocket B is launched upward with an acceleration of $a(t)=\frac{3}{\sqrt{t+1}}$ feet per second per second. At time $t=0$ seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time $t=80$ seconds? Explain your answer.
(a) Average acceleration of rocket A is
$\frac{v(80)-v(0)}{80-0}=\frac{49-5}{80}=\frac{11}{20} \mathrm{ft} / \mathrm{sec}^{2}$
(b) Since the velocity is positive, $\int_{10}^{70} v(t) d t$ represents the distance, in feet, traveled by rocket A from $t=10$ seconds to $t=70$ seconds.

A midpoint Riemann sum is

$$
\begin{aligned}
& 20[v(20)+v(40)+v(60)] \\
& =20[22+35+44]=2020 \mathrm{ft}
\end{aligned}
$$

(c) Let $v_{B}(t)$ be the velocity of rocket B at time t.
$v_{B}(t)=\int \frac{3}{\sqrt{t+1}} d t=6 \sqrt{t+1}+C$
$2=v_{B}(0)=6+C$
$v_{B}(t)=6 \sqrt{t+1}-4$
$v_{B}(80)=50>49=v(80)$
Rocket B is traveling faster at time $t=80$ seconds.
Units of $\mathrm{ft} / \sec ^{2}$ in (a) and ft in (b)

1: answer
$3:\left\{\begin{array}{l}1: \text { explanation } \\ 1: \text { uses } v(20), v(40), v(60) \\ 1: \text { value }\end{array}\right.$
$4:\left\{\begin{array}{l}1: 6 \sqrt{t+1} \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { finds } v_{B}(80), \text { compares to } v(80), \\ \quad \text { and draws a conclusion }\end{array}\right.$

1 : units in (a) and (b)

AP ${ }^{\circledR}$ CALCULUS AB 2004 SCORING GUIDELINES

Question 6

Consider the differential equation $\frac{d y}{d x}=x^{2}(y-1)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
(Note: Use the axes provided in the pink test booklet.)
(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the $x y$-plane. Describe all points in the $x y$-plane for which the slopes are positive.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=3$.

(a)

(b) Slopes are positive at points (x, y) where $x \neq 0$ and $y>1$.
(c) $\frac{1}{y-1} d y=x^{2} d x$
$\ln |y-1|=\frac{1}{3} x^{3}+C$
$|y-1|=e^{C} e^{\frac{1}{3} x^{3}}$
$y-1=K e^{\frac{1}{3} x^{3}}, K= \pm e^{C}$
$2=K e^{0}=K$
$y=1+2 e^{\frac{1}{x^{3}}}$
$2:\left\{\begin{array}{l}1: \begin{array}{l}\text { zero slope at each point }(x, y) \\ \text { where } x=0 \text { or } y=1\end{array} \\ 1:\left\{\begin{array}{l}\text { positive slope at each point }(x, y) \\ \text { where } x \neq 0 \text { and } y>1 \\ \text { negative slope at each point }(x, y) \\ \text { where } x \neq 0 \text { and } y<1\end{array}\right.\end{array}\right.$

1 : description

$$
6:\left\{\begin{array}{l}
1: \text { separates variables } \\
2: \text { antiderivatives } \\
1: \text { constant of integration } \\
1: \text { uses initial condition } \\
1: \text { solves for } y \\
0 / 1 \text { if } y \text { is not exponential }
\end{array}\right.
$$

Note: $\max 3 / 6$ [1-2-0-0-0] if no constant of integration
Note: $0 / 6$ if no separation of variables

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2014 SCORING GUIDELINES

Question 3

The function f is defined on the closed interval $[-5,4]$. The graph of f consists of three line segments and is shown in the figure above.
Let g be the function defined by $g(x)=\int_{-3}^{x} f(t) d t$.
(a) Find $g(3)$.
(b) On what open intervals contained in $-5<x<4$ is the graph of g both increasing and concave down? Give a reason for your answer.
(c) The function h is defined by $h(x)=\frac{g(x)}{5 x}$. Find $h^{\prime}(3)$.
(d) The function p is defined by $p(x)=f\left(x^{2}-x\right)$. Find the slope

Graph of f of the line tangent to the graph of p at the point where $x=-1$.
(a) $g(3)=\int_{-3}^{3} f(t) d t=6+4-1=9$
(b) $g^{\prime}(x)=f(x)$

The graph of g is increasing and concave down on the intervals $-5<x<-3$ and $0<x<2$ because $g^{\prime}=f$ is positive and decreasing on these intervals.
(c) $h^{\prime}(x)=\frac{5 x g^{\prime}(x)-g(x) 5}{(5 x)^{2}}=\frac{5 x g^{\prime}(x)-5 g(x)}{25 x^{2}}$
$h^{\prime}(3)=\frac{(5)(3) g^{\prime}(3)-5 g(3)}{25 \cdot 3^{2}}$
$=\frac{15(-2)-5(9)}{225}=\frac{-75}{225}=-\frac{1}{3}$
(d) $p^{\prime}(x)=f^{\prime}\left(x^{2}-x\right)(2 x-1)$
$p^{\prime}(-1)=f^{\prime}(2)(-3)=(-2)(-3)=6$

1: answer
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { reason }\end{array}\right.$
$3:\left\{\begin{array}{l}2: h^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: p^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2011 SCORING GUIDELINES

Question 4

The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.
Let $g(x)=2 x+\int_{0}^{x} f(t) d t$.
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$.
Justify your answer.

Graph of f
(d) Find the average rate of change of f on the interval
$-4 \leq x \leq 3$. There is no point $c,-4<c<3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.
(a) $g(-3)=2(-3)+\int_{0}^{-3} f(t) d t=-6-\frac{9 \pi}{4}$
$g^{\prime}(x)=2+f(x)$
$g^{\prime}(-3)=2+f(-3)=2$
(b) $g^{\prime}(x)=0$ when $f(x)=-2$. This occurs at $x=\frac{5}{2}$.
$g^{\prime}(x)>0$ for $-4<x<\frac{5}{2}$ and $g^{\prime}(x)<0$ for $\frac{5}{2}<x<3$.
Therefore g has an absolute maximum at $x=\frac{5}{2}$.
(c) $g^{\prime \prime}(x)=f^{\prime}(x)$ changes sign only at $x=0$. Thus the graph of g has a point of inflection at $x=0$.
(d) The average rate of change of f on the interval $-4 \leq x \leq 3$ is $\frac{f(3)-f(-4)}{3-(-4)}=-\frac{2}{7}$.
To apply the Mean Value Theorem, f must be differentiable at each point in the interval $-4<x<3$. However, f is not differentiable at $x=-3$ and $x=0$.
$3:\left\{\begin{array}{l}1: g(-3) \\ 1: g^{\prime}(x) \\ 1: g^{\prime}(-3)\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { considers } g^{\prime}(x)=0 \\ 1: \text { identifies interior candidate } \\ 1: \text { answer with justification }\end{array}\right.$

1 : answer with reason
$2:\left\{\begin{array}{l}1: \text { average rate of change } \\ 1: \text { explanation }\end{array}\right.$

