AP Review 13: Series and Convergence Tests

Today we will review Geometric Series, Harmonic and p-Series, and the Alternating Series Test.

CONVERGENCE OF A GEOMETRIC SERIES

- **1.** If |r| < 1, the geometric series $\sum_{n=0}^{\infty} ar^n$ converges **2.** If $|r| \ge 1$, the geometric series $\sum_{n=0}^{\infty} ar^n$ diverges.

Example 1: For each of the following geometric series, find the value of r and determine if the series converges or diverges.

a.) $\sum_{n=0}^{\infty} 4\left(\frac{2}{3}\right)^{n-1}$	b.) $\sum_{n=0}^{\infty} \frac{3(2)^n}{e^{n+1}}$	c.) $\sum_{n=0}^{\infty} \frac{(-1)^n}{3}$	d.) $\sum_{n=0}^{\infty} \frac{-5}{3^n}$
$e.) \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$	f.) $\sum_{n=0}^{\infty} \frac{\pi^{n-1}}{n}$	_	-

e.)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{6^{n-1}}$$
 f.) $\sum_{n=0}^{\infty} \frac{\pi^{n-1}}{e^n}$

SUM OF AN INFINITE GEOMETRIC SERIES

If |r| < 1, the geometric series $\sum_{n=0}^{\infty} ar^n$ converges, and its sum is

$$S = \frac{a}{1 - r},$$

where a is the first term of the geometric series and r is the common ratio.

Example 2: Determine if the following geometric series converge or diverge. If the series converges, find

- $\mathbf{a.)} \quad \sum_{n=0}^{\infty} \frac{2}{4^n}$
- **b.)** $\sum_{n=2}^{\infty} \frac{\pi^n}{e^{2n-4}}$
- **c.)** $\sum_{n=0}^{\infty} \frac{2(3)^n}{e^n}$
- $\mathbf{d.)} \quad \sum_{n=1}^{\infty} e \left(\frac{-1}{2} \right)^{n-1}$

Practice 1: Consider the geometric series $\sum_{n=0}^{\infty} 2\left(\frac{k}{3}\right)$ where k is a constant.

- **a.)** Find k such that $\sum_{n=0}^{\infty} 2\left(\frac{k}{3}\right)^n = 3$.
- **b.)** Find k such that $\sum_{n=0}^{\infty} 2\left(\frac{k}{3}\right)^n = \frac{4}{3}$.

CONVERGENCE OF A p-SERIES

The p-series is defined by the following where p is a positive real number.

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

- 1. converges if p > 1, and
- **2.** diverges if 0 .

Example 1: Determine if the following series converge or diverge. Identify any value(s) for p.

a.) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$

b.) $\sum_{1}^{\infty} \frac{-2}{n^3}$

 $\mathbf{c.)} \quad \sum_{n=1}^{\infty} n^{-2} \cdot \sqrt{n}$

Alternating Series Test

Let $a_n > 0$. The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 and $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$

converge if the following conditions are both met:

- $1. \lim_{n\to\infty} a_n = 0$
- 2. $a_{n+1} \le a_n$ for all n > N where N is an integer

Example 2: Determine the convergence or divergence of $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$

Example 3: Determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 - 6n + 10}$

Practice 1: Show that the following series converges using the alternating series test

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} = 1 - \frac{1}{2} + \frac{1}{24} - \frac{1}{720} + \cdots$$

DEFINITION of ABSOLUTE and CONDITIONAL CONVERGENCE

- 1. $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges.
- 2. $\sum_{n=1}^{\infty} a_n$ is conditionally convergent if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges.

Example 2: The Kitchen Sink of Alternating Series

Determine if the following series are absolutely,

conditionally convergent or divergent.

a.)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/2}}$$

b.)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{8}$$

c.)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

d.)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot \sqrt[8]{n}}{2n}$$

Homework

Do each problem using your notes, then correct your work using my answers and email me you work with corrections.

Consider the geometric series $\sum_{n=0}^{\infty} k \left(\frac{k+3}{6} \right)^n$ where k is a constant.

a.) Find
$$\sum_{n=0}^{\infty} k \left(\frac{k+3}{6} \right)^n$$
 when $k=1$.

b.) Find
$$k$$
 when $\sum_{n=0}^{\infty} k \left(\frac{k+3}{6}\right)^n = 12$.

c.) The series
$$\sum_{n=0}^{\infty} k \left(\frac{k+3}{6} \right)^n$$
 converges for $a < k < b$ and diverges when $k = a$ or $k = b$. Find a and b .

Practice 3: Each statement below if false. Correct each statement to create a true statement.

For Statements 1-3: Let $a_n > 0$

Statement 1: If
$$a_{n+1} \le a_n$$
 and $\lim_{n \to \infty} a_n$ converges, then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges

Statement 2: If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges

Statement 3: If
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 diverges, then $\lim_{n\to\infty} a_n = 0$

Statement 4: Consider the series
$$\sum_{n=1}^{\infty} b_n$$
. If $\sum_{n=1}^{\infty} b_n$ diverges, then $\lim_{n\to\infty} b_n \neq 0$

Consider the altnerating series defined below:

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

A) Use the alternating series test to show that this series converges when x = 3.

AP Practice Problem

Let
$$a(n) = \frac{1}{n^{k+1}}$$
 where k is a constant

(a) For $k = \frac{1}{2}$, use the alternating series test to show that $\sum_{n=1}^{\infty} (-1)^n a(n)$ converges. Determine if this series converges conditionally or converges absolutely. Explain your reasoning.

(**b**) Let $b(n) = a(\sqrt{n})$. Find all integer values of k such that $\sum_{n=1}^{\infty} (-1)^n b(n)$ converges conditionally.

(c) Let $c(n) = a(n^{-2k})$. Show that there is no real value of k such that $\sum_{n=1}^{\infty} c(n)$ is the harmonic series.

AB Test Takers Practice

AP® CALCULUS AB 2006 SCORING GUIDELINES

Question 4

t (seconds)	0	10	20	30	40	50	60	70	80
v(t) (feet per second)	5	14	22	29	35	40	44	47	49

Rocket A has positive velocity v(t) after being launched upward from an initial height of 0 feet at time t=0seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \le t \le 80$ seconds, as shown in the table above.

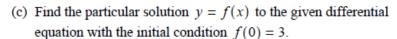
- (a) Find the average acceleration of rocket A over the time interval $0 \le t \le 80$ seconds. Indicate units of measure.
- (b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) dt$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) dt$.
- (c) Rocket B is launched upward with an acceleration of $a(t) = \frac{3}{\sqrt{t+1}}$ feet per second per second. At time t=0 seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time t = 80 seconds? Explain your answer.

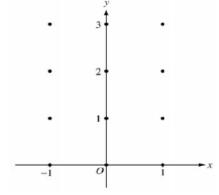
AP® CALCULUS AB 2004 SCORING GUIDELINES

Question 6

Consider the differential equation $\frac{dy}{dx} = x^2(y-1)$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.(Note: Use the axes provided in the pink test booklet.)
- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the *xy*-plane. Describe all points in the *xy*-plane for which the slopes are positive.

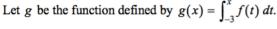




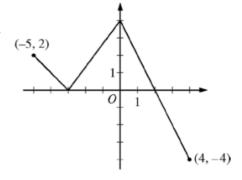
AP® CALCULUS AB/CALCULUS BC 2014 SCORING GUIDELINES

Question 3

The function f is defined on the closed interval [-5, 4]. The graph of f consists of three line segments and is shown in the figure above.



- (b) On what open intervals contained in -5 < x < 4 is the graph of g both increasing and concave down? Give a reason for your answer.
- (c) The function h is defined by $h(x) = \frac{g(x)}{5x}$. Find h'(3).
- (d) The function p is defined by $p(x) = f(x^2 x)$. Find the slope of the line tangent to the graph of p at the point where x = -1.



Graph of f

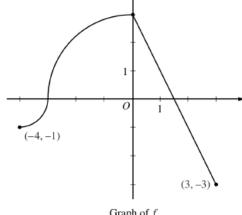
AP® CALCULUS AB 2011 SCORING GUIDELINES

Question 4

The continuous function f is defined on the interval $-4 \le x \le 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.

Let
$$g(x) = 2x + \int_0^x f(t) dt$$
.

- (a) Find g(-3). Find g'(x) and evaluate g'(-3).
- (b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval -4 ≤ x ≤ 3.
 Justify your answer.
- (c) Find all values of x on the interval -4 < x < 3 for which the graph of g has a point of inflection. Give a reason for your answer.



(d) Find the average rate of change of f on the interval Graph of f $-4 \le x \le 3$. There is no point c, -4 < c < 3, for which f'(c) is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.