Check for Understanding

Practice 1: The series $\sum_{n=1}^{\infty} a_{n}(x+2)^{n}$ diverges when $x=4$. Determine if the following statements are
Always true, Sometimes true or Never true

a.) The series diverges when $x=5$. Always True, if $x=4$ is not in the interval of convergence centered at $x=-2$ then $R \leq 6$, so $x=5$ is not in the interval of convergence.	b.) The series converges when $x=-8$. Sometimes true because $x=-8$ could be an endpoint of the interval of convergence.
c.) The series diverges when $x=0$. Sometimes true because since $R<6$ then R could be less than 2 .	d.) The series converges absolutely when $x=-8$. Never true because $x=-8 \Rightarrow \sum_{n=1}^{\infty} a_{n}(-8+2)^{n}=\sum_{n=1}^{\infty} a_{n}(-6)^{n}$ absolutely convergent $\Rightarrow \sum_{n=1}^{\infty}\left\|a_{n}(-6)^{n}\right\|=\sum_{n=1}^{\infty} a_{n}(6)^{n}$ converges This is not possible because when $x=4, \sum_{n=1}^{\infty} a_{n}(4+2)^{n}$ diverges

Practice 2: The series $\sum_{n=1}^{\infty} a_{n}(x-3)^{n}$ converges when $x=1$. Determine if the following statements are
Always true, Sometimes true or Never true

a.) The series diverges when $x=-2$. Sometimes true because $R \geq 2$ so $x=-2$ could be outside the interval of convergence	b.) The series converges when $x=2$. See part a.) Always true because $R \geq 2$ which includes $x=2$.
c.) The series diverges when $x=6$. Sometimes true because R would have to be at least 3 which is possible.	d.) The series converges conditionally when $x=5$. Never true because $x=5 \Rightarrow \sum_{n=1}^{\infty} a_{n}(5-3)^{n}=\sum_{n=1}^{\infty} a_{n}(2)^{n}$ which is not an alternating series so there can be no conditional convergence.

Check for Understanding

Practice 1: A function k has derivatives of all orders for all values of x. A portion of the graph of k is shown above with the line tangent to the graph of k at $x=-1$. For $n \geq 2$, the nth derivative of $k(x)$ at $x=-1$ is given by:

$$
k^{(n)}(-1)=\frac{n!}{n+1} .
$$

Find the third degree Taylor polynomial for $k(x)$ about $c=-1$.

$$
\begin{aligned}
& P_{3}(x)=k(-1)+k^{\prime}(-1)(x+1)+\frac{k^{\prime \prime}(-1)}{2!}(x+1)^{2}+\frac{k^{\prime \prime \prime}(-1)}{3!}(x+1)^{3} \\
& P_{3}(x)=(-2)+\frac{1}{2}(x+1)+\frac{\frac{2!}{2+1}}{2!}(x+1)^{2}+\frac{\frac{3!}{3+1}}{3!}(x+1)^{3} \\
& P_{3}(x)=-2+\frac{1}{2}(x+1)+\frac{1}{3}(x+1)^{2}+\frac{1}{4}(x+1)^{3}
\end{aligned}
$$

Practice 2: The functions f, f^{\prime}, and $f^{\prime \prime}$ are each continuous and differentiable. The nth derivative of f is given by $f^{(n)}(1)=\sum_{i=0}^{\infty} 12\left(\frac{n+1}{5}\right)^{i}$ when $0 \leq n \leq 3$. Find the third degree Taylor polynomial for $f(x)$ centered around $x=1$.

$$
\begin{aligned}
& f(1)=f^{(0)}(1)=\sum_{i=0}^{\infty} 12\left(\frac{0+1}{5}\right)^{i}=\frac{12}{1-\frac{1}{5}}=\frac{60}{5-1}=15 \quad \begin{array}{ll}
\text { geometric series } \\
a=12, r=\frac{1}{5}
\end{array} \\
& f^{\prime}(1)=f^{(1)}(1)=\sum_{i=0}^{\infty} 12\left(\frac{1+1}{5}\right)^{i}=\frac{12}{1-\frac{2}{5}}=\frac{60}{5-2}=20 \quad \begin{array}{l}
\text { geometric series } \\
a=12, r=\frac{2}{5}
\end{array} \\
& f^{\prime \prime}(1)=f^{(2)}(1)=\sum_{i=0}^{\infty} 12\left(\frac{2+1}{5}\right)^{i}=\frac{12}{1-\frac{3}{5}}=\frac{60}{5-3}=30 \quad \begin{array}{l}
\text { geometric series } \\
a=12, r=\frac{3}{5}
\end{array} \\
& f^{\prime \prime \prime}(1)=f^{(3)}(1)=\sum_{i=0}^{\infty} 12\left(\frac{3+1}{5}\right)^{i}=\frac{12}{1-\frac{4}{5}}=\frac{60}{5-4}=60 \quad \begin{array}{l}
\text { geometric series } \\
a=12, r=\frac{4}{5}
\end{array} \\
& P_{3}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3} \\
& P_{3}(x)=15+(20)(x-1)+\frac{30}{2!}(x-1)^{2}+\frac{60}{3!}(x-1)^{3}=15+20(x-1)+15(x-1)^{2}+10(x-1)^{3}
\end{aligned}
$$

Practice 3: The function g is continuous and has derivatives for all orders at $x=-1$. It is known that $g(-1)=7$ and for positive values of n, the nth derivative of g at $x=-1$ is defined as the piecewise function given below:

$$
g^{(n)}(-1)= \begin{cases}n^{2}+1, & n \text { is odd } \\ 0, & n \text { is even }\end{cases}
$$

a.) Find the $5^{\text {th }}$ degree Taylor polynomial, $P_{5}(x)$, for g centered at $x=-1$.

$$
\begin{aligned}
& P_{5}(x)=g(-1)+g^{\prime}(-1)(x+1)+\frac{g^{\prime \prime}(-1)}{2!}(x+1)^{2}+\frac{g^{\prime \prime \prime}(-1)}{3!}(x+1)^{3} \\
&+\frac{g^{(4)}(-1)}{4!}(x+1)^{4}+\frac{g^{(5)}(-1)}{5!}(x+1)^{5} \\
& P_{5}(x)=7+\left(1^{2}+1\right)(x+1)+\frac{0}{2!}(x+1)^{2}+\frac{\left(3^{2}+1\right)}{3!}(x+1)^{3}+\frac{0}{4!}(x+1)^{4}+\frac{\left(5^{2}+1\right)}{5!}(x+1)^{5} \\
& P_{5}(x)=7+2(x+1)+\frac{5}{3}(x+1)^{3}+\frac{13}{60}(x+1)^{5}
\end{aligned}
$$

b.) Determine if $P_{5}(x)$ is increasing or decreasing at $x=-1$. Explain your reasoning.
$P_{5}^{\prime}(x)=2+5(x+1)^{2}+\frac{13}{12}(x+1)^{4} \Rightarrow P_{5}^{\prime}(-1)=2$
$P_{5}(x)$ is increasing at $x=-1$ because $P_{5}^{\prime}(-1)=2>0$

AP Exam Practice

AP Practice Problem

Graph of \boldsymbol{f}

A function f has derivatives of all orders for all values of x. A portion of the graph of f is shown above with the line tangent to the graph of f at $x=2$. Let g be the function defined by $g(x)=3+\int_{2}^{x} f(t) d t$
(a) Find the second degree Taylor polynomial, $P_{2}(x)$, for $g(x)$ centered at $x=2$.

$$
\begin{aligned}
& g(2)=3+\int_{2}^{2} f(t) d t=3 \quad g^{\prime}(2)=f(2)=1 \quad g^{\prime \prime}(2)=f^{\prime}(2)=3 \\
& P_{2}(x)=g(2)+g^{\prime}(2)(x-2)+\frac{g^{\prime \prime}(2)(x-2)^{2}}{2!}=3+(x-2)+\frac{3(x-2)^{2}}{2!}=3+(x-2)+\frac{3}{2}(x-2)^{2}
\end{aligned}
$$

(b) Does $g(x)$ have a local minimum, local maximum, or neither at $x=2$?

Give a reason for your answer.

$$
g^{\prime}(2)=1 \Rightarrow \text { neither because } g^{\prime}(2) \neq 0 \text {, so } x=2 \text { is not a critical point }
$$

(c) Consider the geometric series $\sum_{n=1}^{\infty} a_{n}$ where $a_{1}=g^{\prime}(2)$ and $a_{2}=P_{2}^{\prime}(x)-1$. Find $\sum_{n=1}^{\infty} a_{n}$ when $x=\frac{13}{6}$.

$$
\begin{aligned}
& a_{1}=g^{\prime}(2)=1 \quad P_{2}(x)=3+(x-2)+\frac{3(x-2)^{2}}{2!} \quad a_{2}=P_{2}^{\prime}(x)-1=3(x-2) \\
& r=\frac{a_{2}}{a_{1}}=\frac{3(x-2)}{1}=3(x-2) \quad x=\frac{13}{6} \Rightarrow r=3\left(\frac{13}{6}-2\right)=3\left(\frac{1}{6}\right)=\frac{1}{2} \\
& \sum_{n=1}^{\infty} a_{n}=\frac{1}{1-\frac{1}{2}}=\frac{2}{2-1}=2
\end{aligned}
$$

