AP Review 14: Ratio Test and Taylor Series

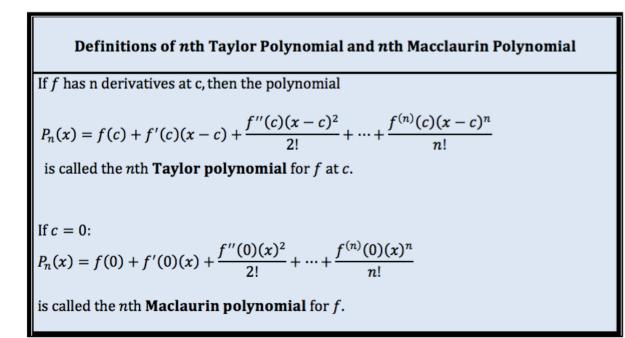
THE RATIO TEST
Let ∑_{n=1}[∞] a_n be a series of nonzero terms.
1. Let lim_{n→∞} | a_{n+1}/a_n | = L, a number.
If L <1, then the series ∑_{n=1}[∞] a_n converges absolutely.
If L = 1, then the ratio test provides no conclusive information about the convergence or divergence of ∑_{n=1}[∞] a_n.
If L > 1, then the series ∑_{n=1}[∞] a_n diverges.
2. Let lim_{n→∞} | a_{n+1}/a_n | ⇒ ∞, then the series ∑_{n=1}[∞] a_n diverges.

Example 1: For each of the following series, determine if the series converges or diverges.

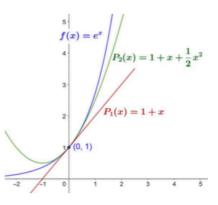
a.) $\sum_{n=1}^{\infty} \frac{3^n}{(n-1)!}$	b.) $\sum_{n=1}^{\infty} \frac{4^n}{3^{n+1} \cdot n}$	c.) $\sum_{n=1}^{\infty} \frac{4^n \cdot n^{10}}{n!}$

a.)	$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n}$	b.) $\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n}$

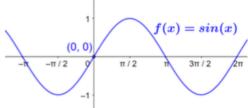
Example 2: For each of the following series, find all values of x such that the series converges.



Example 2: Find a second degree polynomial centered at x = 0 for $f(x) = e^x$



Example 3: Find a third degree polynomial centered at x = 0 for f(x) = sin(x). Use this polynomial to approximate sin(0.2).



x	<i>f</i> (<i>x</i>)	<i>f</i> ′(<i>x</i>)	f''(x)	f'''(x)
1	2	-3	1	-6

Example 5: The functions f and g are differentiable for all orders n. Find a third degree Taylor polynomial for g(x) centered at x = 1 where $g(x) = \int_{1}^{x} f(t)dt$

Practice 1: Find a second degree Maclaurin polynomial for $f(x) = e^{2x}$.

x	f(x)	f'(x)	f''(x)	g(x)	g'(x)
3	1	-2	7	4	-5

Example 3: The functions f and g are differentiable for all orders. The values of f, g, and selected derivatives of each are given in the table above at x = 3. For $n \ge 2$, the *n*th derivative of g at x = 3 is given by $g^{(n)}(3) = f^{(n-2)}(3)$. Find the third degree Taylor polynomial for g(x) about x = 3.

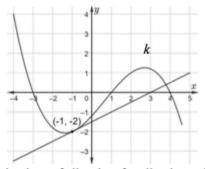
Example 4: A function f(x) is not explicitly known but it is known that f(2) = -7 and f'(2) = 0. Additionally, for n > 1, $f^{(n)}(2) = \frac{n-1}{3^n}$. Find a 4th degree Taylor polynomial for f(x) centered at x = 2. Use this polynomial to approximate f(3).

APR STUDENT PACKET

Homework

Practice 1: The series $\sum_{n=1}^{n} a_n (x+2)^n$ diverges when $x = 4$. Determine if the following statements are		
Always true, Sometimes true or Neve	er true	
a.) The series diverges when $x = 5$.	b.) The series converges when $x = -8$.	
c.) The series diverges when $x = 0$.	d.) The series converges absolutely when $x = -8$.	

 $\sum_{n=1}^{\infty}$ a if the following .



Practice 1: A function k has derivatives of all orders for all values of x. A portion of the graph of k is shown above with the line tangent to the graph of k at x = -1. For $n \ge 2$, the *n*th derivative of k(x) at x = -1 is given by:

$$k^{(n)}(-1) = \frac{n!}{n+1}.$$

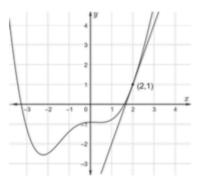
Find the third degree Taylor polynomial for k(x) about c = -1.

Practice 2: The functions f, f', and f'' are each continuous and differentiable. The *n*th derivative of f is

given by $f^{(n)}(1) = \sum_{i=0}^{\infty} 12 \left(\frac{n+1}{5}\right)^i$ when $0 \le n \le 3$. Find the third degree Taylor polynomial for f(x) centered around x = 1.

APR STUDENT PACKET

AP Practice Problem



A function f has derivatives of all orders for all values of x. A portion of the graph of f is shown above with the line tangent to the graph of f at x = 2. Let g be the function defined by $g(x) = 3 + \int_{-\infty}^{x} f(t) dt$.

a.) Find the second degree Taylor polynomial for g(x) centered at x = 2.

b.) Does g(x) have a local minimum, local maximum, or neither at x = 2? Give a reason for your answer.

c.) Consider the geometric series
$$\sum_{n=1}^{\infty} a_n$$
 where $a_1 = g'(2)$ and $a_2 = g'(x) - 1$. Find $\sum_{n=1}^{\infty} a_n$ when $x = \frac{13}{6}$.