AP CALCULUS BC

Topic: 6.13

YouTube Live Virtual Lessons
Mr. Bryan Passwater Mr. Anthony Record Date: April 17, 2020

Arc Length

Let the function $y=f(x)$ represent a smooth curve on the interval $[a, b]$, the arc length of f from $x=a$ to $x=b$ is defined by:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Arc Length Quick Check

Quick Check 1: Consider the function $f(x)=\cos (3 x)$. Write, but do not evaluate, an integral expression that gives the arc length of $f(x)$ from 0 to $\frac{2 \pi}{3}$

$$
L=\int_{0}^{2 \pi / 3} \sqrt{1+[-3 \sin (3 x)]^{2}} d x
$$

Quick Check 2: A portion of the function $g(x)$ is given above. The arc length of the function $g(x)$ over the interval $[0,3]$ is given by $\int_{0}^{3} \sqrt{1+\frac{4}{9} x^{2}} d x$. Find $g^{\prime}(x)$.

$$
\begin{aligned}
& {\left[g^{\prime}(x)\right]^{2}=\frac{4}{9} x^{2} \Rightarrow g^{\prime}(x)=\sqrt{\frac{4}{9} x^{2}}=\frac{2}{3} x \text { or }-\frac{2}{3} x .} \\
& g^{\prime}(x) \neq-\frac{2}{3} x \text { since } g(x) \text { is increasing for } x>0
\end{aligned}
$$

Quick Check 3: A portion of the function $h(x)$ is given above. The arc length of the function $h(x)$ over the interval $[0,2]$ is $\int_{0}^{2} \sqrt{1+\left[\frac{2}{3} e^{\frac{x}{3}}\right]^{2}} d x$. Find the equation of the tangent line to $h(x)$ at $x=0$.

$$
h^{\prime}(x)=\frac{2}{3} e^{\frac{x}{3}} \Rightarrow h^{\prime}(0)=\frac{2}{3} e^{\frac{0}{3}}=\frac{2}{3} \quad T(x)=\frac{2}{3} x+2
$$

Quick Check 4: Consider the function $f(x)=\ln \left(3 x^{2}+2\right)$. The length of the curve of $f(x)$ from

$$
\begin{gathered}
x=1 \text { to } x=4 \text { is given by } \int_{1}^{4} \sqrt{1+\frac{a x^{2}}{\left(3 x^{2}+2\right)^{2}}} d x . \text { Find the value of } a . \\
L=\int_{1}^{4} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \quad f^{\prime}(x)=\frac{6 x}{\left(3 x^{2}+2\right)} \\
=\int_{1}^{4} \sqrt{1+\left[\frac{6 x}{\left(3 x^{2}+2\right)}\right]^{2}} d x \quad\left[\frac{6 x}{\left(3 x^{2}+2\right)}\right]^{2}=\frac{a x^{2}}{\left(3 x^{2}+2\right)^{2}}
\end{gathered} \begin{aligned}
& 36 x^{2}=a x^{2} \\
& a=36
\end{aligned}
$$

Quick Check 5: Let $y=f(g(2 x))$. Write an integral expression that represents the arc length of y from 0 to 5 .

$$
\frac{d y}{d x}=f^{\prime}(g(2 x))\left(g^{\prime}(2 x)\right)(2)
$$

$$
L=\int_{0}^{5} \sqrt{1+\left[2 f^{\prime}(g(2 x))\left(g^{\prime}(2 x)\right)\right]^{2}} d x
$$

2020 FRQ Practice Problem BC1

BC 1: Tony and Bryan both start at the origin and walk the closed paths as shown above to end back at the origin. Tony follows Path \#1 while Bryan follows Path \#2. Path \#1 consists of four line segments and a semi circle while Path \#2 consists of four line segments and the function $f(x)=e^{\frac{x}{2}}$.
(a) Who took the longer path, Bryan or Tony?

Path \#1: $L_{1}=T+O+N_{1}+Y_{1}+Z$

$$
=5+\sqrt{2^{2}+1^{2}}+\left(\frac{1}{2} \pi(2)\right)+2+2=9+\sqrt{5}+\pi=14.3776 \ldots
$$

Path \#2: $L_{2}=B+R+Y_{2}+A \quad+N_{2}$

$$
=5+e^{\frac{2}{2}}+3+\int_{0}^{2} \sqrt{1+\left[\frac{1}{2} e^{\frac{x}{2}}\right]^{2}} d x+1=9+e+2.6625 \ldots=14.3808 \ldots
$$

Bryan's path was longer.
(b) Whose path created the region with the largest area?

Path \#1 area: $(2)(2)+\left[4-\frac{1}{2} \pi(1)^{2}\right]+\frac{1}{2}(1)(2)=9-\frac{1}{2} \pi=7.4292 \ldots$
Path \#2 area: $\int_{0}^{2} e^{\frac{x}{2}} d x+(3)(e)=3 e+2\left[e^{\frac{x}{2}}\right]_{0}^{2}=3 e+2[e-1]=5 e-2=11.5914 \ldots$
Bryan's path's area is largest
(c) Let $P_{2}(x)$ be the second degree Maclaurin polynomial for $f(x)$. Find $P_{2}(x)$ and use it to approximate $f(2)$.

$$
\begin{array}{ll}
f(0) & =1 \\
P_{2}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2} & f^{\prime}(0)=\frac{1}{2} e^{\frac{0}{2}}=\frac{1}{2} \\
f^{\prime \prime}(0)=\frac{1}{4} e^{\frac{0}{2}}=\frac{1}{4} \\
P_{2}(x)=1+\frac{1}{2} x+\frac{1 / 4}{2!} x^{2}=1+\frac{1}{2} x+\frac{1}{8} x^{2} & f(2) \approx P_{2}(2)=1+\frac{1}{2}(2)+\frac{1}{8}(2)^{2}=\frac{5}{2}
\end{array}
$$

2020 FRQ Practice Problem BC2

BC 2: Let g be the function defined by $g(x)=\left\{\begin{array}{cc}a \sin \left(x^{2}-1\right), & 0 \leq x \leq 1 \\ \ln (x), & x>1\end{array}\right.$ where a is a constant.
(a) Show that $g(x)$ is continuous at $x=1$.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}\left[a \sin \left(x^{2}-1\right)\right]=\left[a \sin \left((1)^{2}-1\right)\right]=[a \sin (0)]=0 \\
& \lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow l^{+}}[\ln (x)]=[\ln (1)]=0 \quad g(1)=a \sin \left((1)^{2}-1\right)=0 \\
& g(x) \text { is continuous at } x=1 \text { because } g(1)=\lim _{x \rightarrow 1} g(x)
\end{aligned}
$$

(b) Find the value of a that guarantees the function $g(x)$ is differentiable at $x=1$.
$g^{\prime}(x)= \begin{cases}a \cos \left(x^{2}-1\right)(2 x), & 0 \leq x \leq 1 \\ \frac{1}{x}, & x>1\end{cases}$
$\lim _{x \rightarrow 1^{-}} g^{\prime}(x)=\lim _{x \rightarrow 1^{+}} g^{\prime}(x) \Rightarrow \lim _{x \rightarrow 1^{-}}\left[a \cos \left(x^{2}-1\right)(2 x)\right]=\lim _{x \rightarrow 1^{+}}\left[\frac{1}{x}\right]$
$\lim _{x \rightarrow 1^{-}}\left[a \cos \left(x^{2}-1\right)(2 x)\right]=a \cos (0)(2)=2 a \quad \lim _{x \rightarrow 1^{+}}\left[\frac{1}{x}\right]=1 \Rightarrow 2 a=1 \Rightarrow a=\frac{1}{2}$
(c) Write, but do not evaluate, an expression involving one or more integrals that gives the arc length of $g(x)$ from $x=0$ to $x=3$.

$$
L=\int_{0}^{1} \sqrt{1+\left[x \cos \left(x^{2}-1\right)\right]^{2}} d x+\int_{1}^{3} \sqrt{1+\left[\frac{1}{x}\right]^{2}} d x
$$

2020 FRQ Practice Problem BC3

BC 3: Consider the continuous and differentiable positive function f such that the arc length of the curve f from 0 to 2 is equal to the area bounded between the graph of f and the x axis from 0 to 2 .
(a) Show that the function $y=f(x)$ satisfies the differential equation $y^{2}-\left(y^{\prime}\right)^{2}-1=0$.

$$
\begin{aligned}
\int_{0}^{2} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{0}^{2} f(x) d x \Rightarrow \sqrt{1+\left[f^{\prime}(x)\right]^{2}} & =f(x) \\
(f(x))^{2}-\left(f^{\prime}(x)\right)^{2}-1=\left(1+\left[f^{\prime}(x)\right]^{2}\right)-\left(f^{\prime}(x)\right)^{2}-1 & =0 \\
y^{2}-\left(y^{\prime}\right)^{2}-1 & =0
\end{aligned}
$$

(b) One such function that satisfies the differential equation in part (a) is $g(x)=\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}$.

Find the arc length of $g(x)$ from $x=0$ to $x=2$.

$$
\begin{aligned}
L=\int_{0}^{2} \sqrt{1+\left[g^{\prime}(x)\right]^{2}} d x=\int_{0}^{2} g(x) d x & =\int_{0}^{2}\left(\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}\right) d x \\
& =\frac{1}{2}\left[e^{x}-e^{-x}\right]_{0}^{2}=\frac{1}{2}\left[\left(e^{2}-e^{-2}\right)-\left(e^{0}-e^{-0}\right)\right]=\frac{1}{2}\left[\left(e^{2}-e^{-2}\right)\right]
\end{aligned}
$$

2020 FRQ Practice Problem BC4

BC 4: A portion of the graph for the differentiable function g is given above for $a \leq x \leq b$.
The arc length of g over the interval $[a, b]$ is equal to L where $\mathrm{L}=\int_{a}^{b} \sqrt{1+4 \cos ^{2}(2 x)} d x$.
(a) Find $g^{\prime}(0)$

$$
\left[g^{\prime}(x)\right]^{2}=4 \cos ^{2}(2 x) \Rightarrow g^{\prime}(x)=2 \cos (2 x) \Rightarrow g^{\prime}(0)=2 \cos (0)=2
$$

(b) Find $\int g(x) d x$

$$
\begin{aligned}
& g^{\prime}(x)=2 \cos (2 x) \Rightarrow g(x)=\sin (2 x)+C \\
& \int \sin (2 x) d x=-\frac{1}{2} \cos (2 x)+C x+D
\end{aligned}
$$

(c) Find the equation of the line tangent to $g(x)$ at $x=\frac{\pi}{6}$
$T(x)=g\left(\frac{\pi}{6}\right)+g^{\prime}\left(\frac{\pi}{6}\right)\left(x-\frac{\pi}{6}\right)$

$$
\begin{aligned}
& g\left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{3}\right)+C=\frac{\sqrt{3}}{2}+C \\
& g^{\prime}\left(\frac{\pi}{6}\right)=2 \cos \left(\frac{\pi}{3}\right)=(2)\left(\frac{1}{2}\right)=1
\end{aligned}
$$

$T(x)=\left(\frac{\sqrt{3}}{2}+C\right)+(1)\left(x-\frac{\pi}{6}\right)=\left(\frac{\sqrt{3}}{2}\right)+\left(x-\frac{\pi}{6}\right)+C$

2020 FRQ Practice Problem BC5

x	0	1	4	6	8
$f^{\prime}(x)$	$\sqrt{8}$	$\sqrt{3}$	0	$\sqrt{3}$	2

BC 5: The function f is twice differentiable for all real values with $f^{\prime \prime}(0)=-\frac{3}{8 \sqrt{2}}$. Selected values of f^{\prime}, the derivative of f, are given in the table above. The arc length of the function $f(x)$ from 0 to x can be represented by the function S, defined by $S(x)=\int_{0}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t$.
(a) Using a left Riemann sum with the four subintervals indicated in the table, approximate the arc length of the function $f(x)$ from $x=0$ to $x=8$.

$$
\begin{aligned}
& \int_{0}^{8} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \approx 15 \\
& \approx(1)\left(\sqrt{1+\left[f^{\prime}(0)\right]^{2}}\right)+(3)\left(\sqrt{1+\left[f^{\prime}(1)\right]^{2}}\right)+(2)\left(\sqrt{1+\left[f^{\prime}(4)\right]^{2}}\right)+(2)\left(\sqrt{1+\left[f^{\prime}(6)\right]^{2}}\right) \\
& =\quad(\sqrt{9})+(3) \quad(\sqrt{4})+(2) \quad(\sqrt{1}) \quad+(2) \quad(\sqrt{4}) \quad=15
\end{aligned}
$$

(b) Use Euler's method, starting at $x=0$ with two steps of equal size to approximate $S(8)$. Show the work that leads to your answer.
$S(x)=\int_{0}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t \Rightarrow S^{\prime}(x)=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$

x	$S(x)$	$S^{\prime}(x) d x$
0	0	$\sqrt{1+\left[f^{\prime}(0)\right]^{2}}(4)=\sqrt{1+[\sqrt{8}]^{2}}(4)=12$
4	12	$\sqrt{1+\left[f^{\prime}(4)\right]^{2}}(4)=\sqrt{1+[0]^{2}}(4)=4$
8	16	

$$
S(8) \approx 8
$$

(c) Let $P_{2}(x)$ be the second degree Maclaurin polynomial for $S(x)$. Find $P_{2}(x)$ and use it to approximate $S(8)$.

$$
\begin{aligned}
& S(0)=0 \\
& P_{2}(x)=S(0)+S^{\prime}(0) x+\frac{S^{\prime \prime}(0)}{2!} x^{2} \quad S^{\prime}(0)=\sqrt{1+\left[f^{\prime}(0)\right]^{2}}=3 \\
& S^{\prime \prime}(0)=\frac{2 f^{\prime}(0) f^{\prime \prime}(0)}{2 \sqrt{1+\left[f^{\prime}(0)\right]^{2}}}=\frac{(\sqrt{8})\left(-\frac{3}{8 \sqrt{2}}\right)}{3}=\frac{-(2)}{8}=-\frac{1}{4} \\
& P_{2}(x)=3 x-\frac{1}{8} x^{2} \quad S(8) \approx 3(8)-\frac{1}{8}(8)^{2}=24-8=16
\end{aligned}
$$

AP ${ }^{\circledR}$ CALCULUS BC 2004 SCORING GUIDELINES

Question 5

A population is modeled by a function P that satisfies the logistic differential equation

$$
\frac{d P}{d t}=\frac{P}{5}\left(1-\frac{P}{12}\right)
$$

(a) If $P(0)=3$, what is $\lim _{t \rightarrow \infty} P(t)$?

If $P(0)=20$, what is $\lim _{t \rightarrow \infty} P(t) ?$
(b) If $P(0)=3$, for what value of P is the population growing the fastest?
(c) A different population is modeled by a function Y that satisfies the separable differential equation

$$
\frac{d Y}{d t}=\frac{Y}{5}\left(1-\frac{t}{12}\right)
$$

Find $Y(t)$ if $Y(0)=3$.
(d) For the function Y found in part (c), what is $\lim _{t \rightarrow \infty} Y(t)$?
(a) For this logistic differential equation, the carrying capacity is 12 .

If $P(0)=3, \lim _{t \rightarrow \infty} P(t)=12$.
If $P(0)=20, \lim _{t \rightarrow \infty} P(t)=12$.
(b) The population is growing the fastest when P is half the carrying capacity. Therefore, P is growing the fastest when $P=6$.
(c) $\frac{1}{Y} d Y=\frac{1}{5}\left(1-\frac{t}{12}\right) d t=\left(\frac{1}{5}-\frac{t}{60}\right) d t$
$\ln |Y|=\frac{t}{5}-\frac{t^{2}}{120}+C$
$Y(t)=K e^{\frac{t}{5}-\frac{t^{2}}{120}}$
$K=3$
$Y(t)=3 e^{\frac{t}{5}-\frac{t^{2}}{120}}$
(d) $\lim _{t \rightarrow \infty} Y(t)=0$

$$
2:\left\{\begin{array}{l}
1: \text { answer } \\
1: \text { answer }
\end{array}\right.
$$

1: answer

5 :
1: separates variables
1: antiderivatives
1 : constant of integration
1 : uses initial condition
1: solves for Y
$0 / 1$ if Y is not exponential

Note: $\max 2 / 5$ [1-1-0-0-0] if no constant of integration
Note: $0 / 5$ if no separation of variables

1: answer
$0 / 1$ if Y is not exponential

A ${ }^{\circledR}$ CALCULUS BC
 2004 SCORING GUIDELINES

Question 6
Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$.
(a) Find $P(x)$.
(b) Find the coefficient of x^{22} in the Taylor series for f about $x=0$.
(c) Use the Lagrange error bound to show that $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right|<\frac{1}{100}$.
(d) Let G be the function given by $G(x)=\int_{0}^{x} f(t) d t$. Write the third-degree Taylor polynomial for G about $x=0$.
(a) $f(0)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$

$$
\begin{aligned}
& f^{\prime}(0)=5 \cos \left(\frac{\pi}{4}\right)=\frac{5 \sqrt{2}}{2} \\
& f^{\prime \prime}(0)=-25 \sin \left(\frac{\pi}{4}\right)=-\frac{25 \sqrt{2}}{2} \\
& f^{\prime \prime \prime}(0)=-125 \cos \left(\frac{\pi}{4}\right)=-\frac{125 \sqrt{2}}{2} \\
& P(x)=\frac{\sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} x-\frac{25 \sqrt{2}}{2(2!)} x^{2}-\frac{125 \sqrt{2}}{2(3!)} x^{3}
\end{aligned}
$$

(b) $\frac{-5^{22} \sqrt{2}}{2(22!)}$
(c) $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right| \leq \max _{0 \leq c \leq \frac{1}{10}}\left|f^{(4)}(c)\right|\left(\frac{1}{4!}\right)\left(\frac{1}{10}\right)^{4}$

$$
\leq \frac{625}{4!}\left(\frac{1}{10}\right)^{4}=\frac{1}{384}<\frac{1}{100}
$$

(d) The third-degree Taylor polynomial for G about

$$
\begin{array}{r}
x=0 \text { is } \int_{0}^{x}\left(\frac{\sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} t-\frac{25 \sqrt{2}}{4} t^{2}\right) d t \\
=\frac{\sqrt{2}}{2} x+\frac{5 \sqrt{2}}{4} x^{2}-\frac{25 \sqrt{2}}{12} x^{3}
\end{array}
$$

$4: P(x)$
$\langle-1\rangle$ each error or missing term deduct only once for $\sin \left(\frac{\pi}{4}\right)$ evaluation error
deduct only once for $\cos \left(\frac{\pi}{4}\right)$
evaluation error
$\langle-1\rangle$ max for all extra terms, $+\cdots$, misuse of equality
$2:\left\{\begin{array}{l}1: \text { magnitude } \\ 1: \text { sign }\end{array}\right.$

1 : error bound in an appropriate inequality

2 : third-degree Taylor polynomial for G about $x=0$
$\langle-1\rangle$ each incorrect or missing term
$\langle-1\rangle$ max for all extra terms, $+\cdots$, misuse of equality

