AP Review 15: Arc Length

Arc Length

Let the function y = f(x) represent a smooth curve on the interval [a, b], the arc length of f from x = a to x = b is defined by:

$$L = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

Quick Check 1: Consider the function $f(x)=\cos(3x)$. Write, but do not evaluate, an integral expression that gives the arc length of f(x) from 0 to $\frac{2\pi}{3}$

Quick Check 2: A portion of the function g(x) is given above. The arc length of the function g(x) over

the interval [0,3] is given by
$$\int_{0}^{3} \sqrt{1 + \frac{4}{9}x^{2}} dx$$
. Find $g'(x)$.

Quick Check 3: A portion of the function h(x) is given above. The arc length of the function h(x) over

the interval [0,2] is $\int_{0}^{2} \sqrt{1 + \left[\frac{2}{3}e^{\frac{x}{3}}\right]^{2}} dx$. Find the equation of the tangent line to h(x) at x = 0.

Quick Check 4: Consider the function $f(x) = \ln(3x^2 + 2)$. The length of the curve of f(x) from

$$x = 1$$
 to $x = 4$ is given by
$$\int_{1}^{4} \sqrt{1 + \frac{ax^2}{(3x^2 + 2)^2}} dx$$
. Find the value of a .

Quick Check 5: Let y = f(g(2x)). Write an integral expression that represents the arc length of y from 0 to 5.

Homework

For pages 3-4, you may either try the problems on your own and then correct your work or work alongside the answers. For Pages 5-6, complete the problems without notes and then score yourself as normal!

BC 1: Tony and Bryan both start at the origin and walk the closed paths as shown above to end back at the origin. Tony follows Path #1 while Bryan follows Path #2. Path #1 consists of four line segments and a semi circle while Path #2 consists of four line segments and the function $f(x) = e^{\frac{x}{2}}$.

(a) Who took the longer path, Bryan or Tony?

(b) Whose path created the region with the largest area?

(c) Let $P_2(x)$ be the second degree Maclaurin polynomial for f(x). Find $P_2(x)$ and use it to approximate f(2).

BC 4: A portion of the graph for the differentiable function g is given above for $a \le x \le b$.

The arc length of g over the interval [a,b] is equal to L where $L=\int_a^b \sqrt{1+4\cos^2(2x)}\,dx$.

(a) Find g'(0)

(b) Find $\int g(x)dx$

(c) Find the equation of the line tangent to g(x) at $x = \frac{\pi}{6}$

BC Calc 2004 #5 No Calc

A population is modeled by a function P that satisfies the logistic differential equation

$$\frac{dP}{dt} = \frac{P}{5} \left(1 - \frac{P}{12} \right).$$

- (a) If P(0) = 3, what is $\lim_{t \to \infty} P(t)$? If P(0) = 20, what is $\lim_{t \to \infty} P(t)$?
- (b) If P(0) = 3, for what value of P is the population growing the fastest?
- (c) A different population is modeled by a function Y that satisfies the separable differential equation

$$\frac{dY}{dt} = \frac{Y}{5} \left(1 - \frac{t}{12} \right).$$

Find
$$Y(t)$$
 if $Y(0) = 3$.

(d) For the function Y found in part (c), what is $\lim_{t\to\infty} Y(t)$?

BC Calc 2004 #6 No Calc

Let f be the function given by $f(x) = \sin\left(5x + \frac{\pi}{4}\right)$, and let P(x) be the third-degree Taylor polynomial for f about x = 0.

- (a) Find P(x).
- (b) Find the coefficient of x^{22} in the Taylor series for f about x = 0.
- (d) Let G be the function given by $G(x) = \int_0^x f(t) dt$. Write the third-degree Taylor polynomial for G about x = 0.