AP Review 15: Arc Length

Arc Length

Let the function $y=f(x)$ represent a smooth curve on the interval $[a, b]$, the arc length of f from $x=a$ to $x=b$ is defined by:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Quick Check 1: Consider the function $f(x)=\cos (3 x)$. Write, but do not evaluate, an integral expression that gives the arc length of $f(x)$ from 0 to $\frac{2 \pi}{3}$

Quick Check 2: A portion of the function $g(x)$ is given above. The arc length of the function $g(x)$ over the interval $[0,3]$ is given by $\int_{0}^{3} \sqrt{1+\frac{4}{9} x^{2}} d x$. Find $g^{\prime}(x)$.

Quick Check 3: A portion of the function $h(x)$ is given above. The arc length of the function $h(x)$ over the interval $[0,2]$ is $\int_{0}^{2} \sqrt{1+\left[\frac{2}{3} e^{\frac{x}{3}}\right]^{2}} d x$. Find the equation of the tangent line to $h(x)$ at $x=0$.

Quick Check 4: Consider the function $f(x)=\ln \left(3 x^{2}+2\right)$. The length of the curve of $f(x)$ from

$$
x=1 \text { to } x=4 \text { is given by } \int_{1}^{4} \sqrt{1+\frac{a x^{2}}{\left(3 x^{2}+2\right)^{2}}} d x . \text { Find the value of } a .
$$

Quick Check 5: Let $y=f(g(2 x))$. Write an integral expression that represents the arc length of y from 0 to 5 .

Homework
For pages 3-4, you may either try the problems on your own and then correct your work or work alongside the answers. For Pages 5-6, complete the problems without notes and then score yourself as normal!

BC 1: Tony and Bryan both start at the origin and walk the closed paths as shown above to end back at the origin. Tony follows Path \#1 while Bryan follows Path \#2. Path \#1 consists of four line segments and a semi circle while Path \#2 consists of four line segments and the function $f(x)=e^{\frac{x}{2}}$.
(a) Who took the longer path, Bryan or Tony?
(b) Whose path created the region with the largest area?
(c) Let $P_{2}(x)$ be the second degree Maclaurin polynomial for $f(x)$. Find $P_{2}(x)$ and use it to approximate $f(2)$.

BC 4: A portion of the graph for the differentiable function g is given above for $a \leq x \leq b$.
The arc length of g over the interval $[a, b]$ is equal to L where $\mathrm{L}=\int_{a}^{b} \sqrt{1+4 \cos ^{2}(2 x)} d x$.
(a) Find $g^{\prime}(0)$
(b) Find $\int g(x) d x$
(c) Find the equation of the line tangent to $g(x)$ at $x=\frac{\pi}{6}$

BC Calc 2004 \#5 No Calc
A population is modeled by a function P that satisfies the logistic differential equation

$$
\frac{d P}{d t}=\frac{P}{5}\left(1-\frac{P}{12}\right) .
$$

(a) If $P(0)=3$, what is $\lim _{t \rightarrow \infty} P(t)$?

If $P(0)=20$, what is $\lim _{t \rightarrow \infty} P(t)$?
(b) If $P(0)=3$, for what value of P is the population growing the fastest?
(c) A different population is modeled by a function Y that satisfies the separable differential equation

$$
\frac{d Y}{d t}=\frac{Y}{5}\left(1-\frac{t}{12}\right) .
$$

Find $Y(t)$ if $Y(0)=3$.
(d) For the function Y found in part (c), what is $\lim _{t \rightarrow \infty} Y(t)$?

BC Calc 2004 \#6 No Calc
Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$.
(a) Find $P(x)$.
(b) Find the coefficient of x^{22} in the Taylor series for f about $x=0$.
(d) Let G be the function given by $G(x)=\int_{0}^{x} f(t) d t$. Write the third-degree Taylor polynomial for G about $x=0$.

