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Let R be the region bounded by the graphs of y x=  and 

,2
xy =  as shown in the figure above. 

 

(a)  Find the area of R. 
(b)  The region R is the base of a solid. For this solid, the 

cross sections perpendicular to the x-axis are squares. 
Find the volume of this solid. 

(c)  Write, but do not evaluate, an integral expression for the 
volume of the solid generated when R is rotated about 
the horizontal line 2.y =  
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(c) Volume ( ) ( )
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3 : { 1 : limits and constant
 2 : integrand
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Consider the differential equation 2 .dy x ydx = −  

(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated. 

(b) Find 
2

2
d y
dx

 in terms of x and y. Determine the concavity of all solution curves for the given differential 

equation in Quadrant II. Give a reason for your answer. 

(c) Let ( )y f x=  be the particular solution to the differential equation with the initial condition ( )2 3.f =  
Does f have a relative minimum, a relative maximum, or neither at 2 ?x =  Justify your answer. 

(d) Find the values of the constants m and b for which y mx b= +  is a solution to the differential equation. 

     (a) 

 

{ 0 1 : slopes where 
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(b) 
2

2 2 2 (2 ) 2 2d y dy x y x ydxdx
= − = − − = − +  

 
In Quadrant II, 0x <  and 0,y >  so 2 2 0.x y− + >  
Therefore, all solution curves are concave up in Quadrant II. 
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Therefore, f has neither a relative minimum nor a relative 
maximum at 2.x =  
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Therefore, 2m =  and 2.b = −  
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3 :  1 : 2
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Let f be the function defined for 0,x >  with ( ) 2f e =  and ,f ′  the first derivative of f, given by ( ) 2 ln .f x x x′ =

(a)  Write an equation for the line tangent to the graph of f at the point ( ), 2 .e  

(b)  Is the graph of f concave up or concave down on the interval 1 3 ?x< <  Give a reason for your answer. 

(c)  Use antidifferentiation to find ( ).f x  

 
   

(a) ( ) 2f e e′ =  
 
An equation for the line tangent to the graph of f  at the 

point ( ), 2e  is ( )22 .y e x e− = −  
 
 

 

2 : ( ) 1 : 
1 : equation of tangent line
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(b) ( ) 2 ln .f x x x x′′ = +   
 
For 1 3,x< <  0x >  and ln 0,x >  so ( ) 0.f x′′ >  Thus, 
the graph of f is concave up on ( )1, 3 .   
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1 : answer with reason
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(c) Since ( ) ( )2 ln ,f x x x dx= ∫  we consider integration by 

parts. 
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Since ( ) 2,f e =  
3 3

2 3 9
e e C= − +  and 322 .9C e= −  

Thus, ( )
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1 : uses 2
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Question 5 

 

Consider the differential equation 2 65 2
dy xdx y= − −  for 2.y ≠  Let ( )y f x=  be the particular solution to this 

differential equation with the initial condition ( )1 4.f − = −  

(a) Evaluate dy
dx  and 

2

2
d y
dx

 at ( )1, 4 .− −  

(b) Is it possible for the x-axis to be tangent to the graph of f at some point? Explain why or why not. 
(c) Find the second-degree Taylor polynomial for f about 1.x = −  
(d) Use Euler’s method, starting at 1x = −  with two steps of equal size, to approximate ( )0 .f  Show the work 

that leads to your answer. 
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(b) The x-axis will be tangent to the graph of f if 
( ), 0

0.
k

dy
dx =

The x-axis will never be tangent to the graph of f because  

( )
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2 :  1 : 0 and 0

1 : answer and explanation
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(c) ( ) ( ) ( )294 6 1 12P x x x= − + + − +  

 

 

2 : { 1 : quadratic and centered at 1
 1 : coefficients

x = −
 

 
 

(d) ( )1 4f − = −  

 ( ) ( )1 14 6 12 2f − ≈ − + = −  

 ( ) ( )1 5 50 1 22 4 8f ≈ − + + =  

2 : ( )
1 : Euler's method with 2 steps
1 : Euler's approximation to 0f
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