AP ${ }^{\circledR}$ CALCULUS AB 2009 SCORING GUIDELINES (Form B)

Question 4

Let R be the region bounded by the graphs of $y=\sqrt{x}$ and $y=\frac{x}{2}$, as shown in the figure above.
(a) Find the area of R.
(b) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are squares. Find the volume of this solid.
(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about
 the horizontal line $y=2$.
(a) Area $=\int_{0}^{4}\left(\sqrt{x}-\frac{x}{2}\right) d x=\frac{2}{3} x^{3 / 2}-\left.\frac{x^{2}}{4}\right|_{x=0} ^{x=4}=\frac{4}{3}$
$3:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$
(b) Volume $=\int_{0}^{4}\left(\sqrt{x}-\frac{x}{2}\right)^{2} d x=\int_{0}^{4}\left(x-x^{3 / 2}+\frac{x^{2}}{4}\right) d x$

$$
=\frac{x^{2}}{2}-\frac{2 x^{5 / 2}}{5}+\left.\frac{x^{3}}{12}\right|_{x=0} ^{x=4}=\frac{8}{15}
$$

(c) Volume $=\pi \int_{0}^{4}\left(\left(2-\frac{x}{2}\right)^{2}-(2-\sqrt{x})^{2}\right) d x$
$3:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { limits and constant } \\ 2: \text { integrand }\end{array}\right.$

AP ${ }^{\circledR}$ CALUCLUS AB/CALCULUS BC 2015 SCORING GUIDELINES

Question 4

Consider the differential equation $\frac{d y}{d x}=2 x-y$.
(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.
(b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine the concavity of all solution curves for the given differential equation in Quadrant II. Give a reason for your answer.
(c) Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(2)=3$. Does f have a relative minimum, a relative maximum, or neither at $x=2$? Justify your answer.
(d) Find the values of the constants m and b for which $y=m x+b$ is a solution to the differential equation.
(a)

(b) $\frac{d^{2} y}{d x^{2}}=2-\frac{d y}{d x}=2-(2 x-y)=2-2 x+y$

In Quadrant II, $x<0$ and $y>0$, so $2-2 x+y>0$.
Therefore, all solution curves are concave up in Quadrant II.
(c) $\left.\frac{d y}{d x}\right|_{(x, y)=(2,3)}=2(2)-3=1 \neq 0$

Therefore, f has neither a relative minimum nor a relative maximum at $x=2$.
(d) $y=m x+b \Rightarrow \frac{d y}{d x}=\frac{d}{d x}(m x+b)=m$
$2 x-y=m$
$2 x-(m x+b)=m$
$(2-m) x-(m+b)=0$
$2-m=0 \Rightarrow m=2$
$b=-m \Rightarrow b=-2$

Therefore, $m=2$ and $b=-2$.
$2:\left\{\begin{array}{l}1: \text { slopes where } x=0 \\ 1: \text { slopes where } x=1\end{array}\right.$
$1:\left\{\begin{array}{l}1: \frac{d^{2} y}{d x^{2}} \\ 1: \text { concave up with reason }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { considers }\left.\frac{d y}{d x}\right|_{(x, y)=(2,3)} \\ 1: \text { conclusion with justification }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \frac{d}{d x}(m x+b)=m \\ 1: 2 x-y=m \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS BC
 2007 SCORING GUIDELINES

Question 4

Let f be the function defined for $x>0$, with $f(e)=2$ and f^{\prime}, the first derivative of f, given by $f^{\prime}(x)=x^{2} \ln x$.
(a) Write an equation for the line tangent to the graph of f at the point $(e, 2)$.
(b) Is the graph of f concave up or concave down on the interval $1<x<3$? Give a reason for your answer.
(c) Use antidifferentiation to find $f(x)$.
(a) $f^{\prime}(e)=e^{2}$

An equation for the line tangent to the graph of f at the point $(e, 2)$ is $y-2=e^{2}(x-e)$.
(b) $f^{\prime \prime}(x)=x+2 x \ln x$.

For $1<x<3, x>0$ and $\ln x>0$, so $f^{\prime \prime}(x)>0$. Thus, the graph of f is concave up on $(1,3)$.
(c) Since $f(x)=\int\left(x^{2} \ln x\right) d x$, we consider integration by parts.

$$
\begin{array}{ll}
u=\ln x & d v=x^{2} d x \\
d u=\frac{1}{x} d x & v=\int\left(x^{2}\right) d x=\frac{1}{3} x^{3}
\end{array}
$$

Therefore,

$$
\begin{aligned}
f(x) & =\int\left(x^{2} \ln x\right) d x \\
& =\frac{1}{3} x^{3} \ln x-\int\left(\frac{1}{3} x^{3} \cdot \frac{1}{x}\right) d x \\
& =\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C .
\end{aligned}
$$

Since $f(e)=2,2=\frac{e^{3}}{3}-\frac{e^{3}}{9}+C$ and $C=2-\frac{2}{9} e^{3}$.
Thus, $f(x)=\frac{x^{3}}{3} \ln x-\frac{1}{9} x^{3}+2-\frac{2}{9} e^{3}$.
$2:\left\{\begin{array}{l}1: f^{\prime}(e) \\ 1: \text { equation of tangent line }\end{array}\right.$
$3:\left\{\begin{array}{l}2: f^{\prime \prime}(x) \\ 1: \text { answer with reason }\end{array}\right.$
$4:\left\{\begin{array}{l}2: \text { antiderivative } \\ 1: \text { uses } f(e)=2 \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS BC 2006 SCORING GUIDELINES

Question 5

Consider the differential equation $\frac{d y}{d x}=5 x^{2}-\frac{6}{y-2}$ for $y \neq 2$. Let $y=f(x)$ be the particular solution to this differential equation with the initial condition $f(-1)=-4$.
(a) Evaluate $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $(-1,-4)$.
(b) Is it possible for the x-axis to be tangent to the graph of f at some point? Explain why or why not.
(c) Find the second-degree Taylor polynomial for f about $x=-1$.
(d) Use Euler's method, starting at $x=-1$ with two steps of equal size, to approximate $f(0)$. Show the work that leads to your answer.
(a) $\left.\frac{d y}{d x}\right|_{(-1,-4)}=6$
$\frac{d^{2} y}{d x^{2}}=10 x+6(y-2)^{-2} \frac{d y}{d x}$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{(-1,-4)}=-10+6 \frac{1}{(-6)^{2}} 6=-9$
(b) The x-axis will be tangent to the graph of f if $\left.\frac{d y}{d x}\right|_{(k, 0)}=0$. The x-axis will never be tangent to the graph of f because $\left.\frac{d y}{d x}\right|_{(k, 0)}=5 k^{2}+3>0$ for all k.
(c) $\quad P(x)=-4+6(x+1)-\frac{9}{2}(x+1)^{2}$
(d) $f(-1)=-4$
$f\left(-\frac{1}{2}\right) \approx-4+\frac{1}{2}(6)=-1$
$f(0) \approx-1+\frac{1}{2}\left(\frac{5}{4}+2\right)=\frac{5}{8}$
$2:\left\{\begin{array}{l}1: \text { quadratic and centered at } x=-1 \\ 1: \text { coefficients }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { Euler's method with } 2 \text { steps } \\ 1: \text { Euler's approximation to } f(0)\end{array}\right.$

