AP ${ }^{\circledR}$ CALCULUS AB 2007 SCORING GUIDELINES

Question 6

Let f be the function defined by $f(x)=k \sqrt{x}-\ln x$ for $x>0$, where k is a positive constant.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) For what value of the constant k does f have a critical point at $x=1$? For this value of k, determine whether f has a relative minimum, relative maximum, or neither at $x=1$. Justify your answer.
(c) For a certain value of the constant k, the graph of f has a point of inflection on the x-axis. Find this value of k.
(a) $f^{\prime}(x)=\frac{k}{2 \sqrt{x}}-\frac{1}{x}$
$f^{\prime \prime}(x)=-\frac{1}{4} k x^{-3 / 2}+x^{-2}$
(b) $f^{\prime}(1)=\frac{1}{2} k-1=0 \Rightarrow k=2$

When $k=2, \quad f^{\prime}(1)=0$ and $f^{\prime \prime}(1)=-\frac{1}{2}+1>0$. f has a relative minimum value at $x=1$ by the Second Derivative Test.
(c) At this inflection point, $f^{\prime \prime}(x)=0$ and $f(x)=0$.

$$
\begin{aligned}
& f^{\prime \prime}(x)=0 \Rightarrow \frac{-k}{4 x^{3 / 2}}+\frac{1}{x^{2}}=0 \Rightarrow k=\frac{4}{\sqrt{x}} \\
& f(x)=0 \Rightarrow k \sqrt{x}-\ln x=0 \Rightarrow k=\frac{\ln x}{\sqrt{x}}
\end{aligned}
$$

Therefore, $\frac{4}{\sqrt{x}}=\frac{\ln x}{\sqrt{x}}$

$$
\Rightarrow 4=\ln x
$$

$$
\Rightarrow x=e^{4}
$$

$$
\Rightarrow k=\frac{4}{e^{2}}
$$

$A P^{\circledR}$ CALCULUS AB 2003 SCORING GUIDELINES

 Question 6

 Question 6}

Let f be the function defined by

$$
f(x)= \begin{cases}\sqrt{x+1} & \text { for } 0 \leq x \leq 3 \\ 5-x & \text { for } 3<x \leq 5\end{cases}
$$

(a) Is f continuous at $x=3$? Explain why or why not.
(b) Find the average value of $f(x)$ on the closed interval $0 \leq x \leq 5$.
(c) Suppose the function g is defined by

$$
g(x)= \begin{cases}k \sqrt{x+1} & \text { for } 0 \leq x \leq 3 \\ m x+2 & \text { for } 3<x \leq 5\end{cases}
$$

where k and m are constants. If g is differentiable at $x=3$, what are the values of k and m ?
(a) f is continuous at $x=3$ because
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=2$.
Therefore, $\lim _{x \rightarrow 3} f(x)=2=f(3)$.
(b) $\int_{0}^{5} f(x) d x=\int_{0}^{3} f(x) d x+\int_{3}^{5} f(x) d x$

$$
\begin{aligned}
& =\left.\frac{2}{3}(x+1)^{3 / 2}\right|_{0} ^{3}+\left.\left(5 x-\frac{1}{2} x^{2}\right)\right|_{3} ^{5} \\
& =\left(\frac{16}{3}-\frac{2}{3}\right)+\left(\frac{25}{2}-\frac{21}{2}\right)=\frac{20}{3}
\end{aligned}
$$

Average value: $\frac{1}{5} \int_{0}^{5} f(x) d x=\frac{4}{3}$
(c) Since g is continuous at $x=3,2 k=3 m+2$.
$g^{\prime}(x)=\left\{\begin{array}{cc}\frac{k}{2 \sqrt{x+1}} & \text { for } 0<x<3 \\ m & \text { for } 3<x<5\end{array}\right.$
$\lim _{x \rightarrow 3^{-}} g^{\prime}(x)=\frac{k}{4}$ and $\lim _{x \rightarrow 3^{+}} g^{\prime}(x)=m$
Since these two limits exist and g is differentiable at $x=3$, the two limits are equal. Thus $\frac{k}{4}=m$.
$8 m=3 m+2 ; m=\frac{2}{5}$ and $k=\frac{8}{5}$

1 : answers "yes" and equates the values of the left- and right-hand

2 : limits

1 : explanation involving limits
$1: k \int_{0}^{3} f(x) d x+k \int_{3}^{5} f(x) d x$
(where $k \neq 0$)
4 :
1: antiderivative of $\sqrt{x+1}$
1: antiderivative of $5-x$
1 : evaluation and answer
$3:\left\{\begin{array}{l}1: 2 k=3 m+2 \\ 1: \frac{k}{4}=m \\ 1: \text { values for } k \text { and } m\end{array}\right.$

AP ${ }^{\oplus}$ CALCULUS BC 2013 SCORING GUIDELINES

Question 6

A function f has derivatives of all orders at $x=0$. Let $P_{n}(x)$ denote the n th-degree Taylor polynomial for f about $x=0$.
(a) It is known that $f(0)=-4$ and that $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.
(b) It is known that $f^{\prime \prime}(0)=-\frac{2}{3}$ and $f^{\prime \prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$.
(c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $h(0)=7$. Find the third-degree Taylor polynomial for h about $x=0$.
(a) $P_{1}(x)=f(0)+f^{\prime}(0) x=-4+f^{\prime}(0) x$
$P_{1}\left(\frac{1}{2}\right)=-4+f^{\prime}(0) \cdot \frac{1}{2}=-3$
$f^{\prime}(0) \cdot \frac{1}{2}=1$
$f^{\prime}(0)=2$
(b) $P_{3}(x)=-4+2 x+\left(-\frac{2}{3}\right) \cdot \frac{x^{2}}{2!}+\frac{1}{3} \cdot \frac{x^{3}}{3!}$

$$
=-4+2 x-\frac{1}{3} x^{2}+\frac{1}{18} x^{3}
$$

(c) Let $Q_{n}(x)$ denote the Taylor polynomial of degree n for h about $x=0$.
$h^{\prime}(x)=f(2 x) \Rightarrow Q_{3}{ }^{\prime}(x)=-4+2(2 x)-\frac{1}{3}(2 x)^{2}$
$Q_{3}(x)=-4 x+4 \cdot \frac{x^{2}}{2}-\frac{4}{3} \cdot \frac{x^{3}}{3}+C ; C=Q_{3}(0)=h(0)=7$
$Q_{3}(x)=7-4 x+2 x^{2}-\frac{4}{9} x^{3}$

OR
$h^{\prime}(x)=f(2 x), h^{\prime \prime}(x)=2 f^{\prime}(2 x), h^{\prime \prime \prime}(x)=4 f^{\prime \prime}(2 x)$
$h^{\prime}(0)=f(0)=-4, h^{\prime \prime}(0)=2 f^{\prime}(0)=4, h^{\prime \prime \prime}(0)=4 f^{\prime \prime}(0)=-\frac{8}{3}$
$Q_{3}(x)=7-4 x+4 \cdot \frac{x^{2}}{2!}-\frac{8}{3} \cdot \frac{x^{3}}{3!}=7-4 x+2 x^{2}-\frac{4}{9} x^{3}$
$2:\left\{\begin{array}{l}1: \text { uses } P_{1}(x) \\ 1: \text { verifies } f^{\prime}(0)=2\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { first two terms } \\ 1: \text { third term } \\ 1: \text { fourth term }\end{array}\right.$
$4:\left\{\begin{array}{l}2: \text { applies } h^{\prime}(x)=f(2 x) \\ 1: \text { constant term } \\ 1: \text { remaining terms }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS BC 2008 SCORING GUIDELINES

Question 5

The derivative of a function f is given by $f^{\prime}(x)=(x-3) e^{x}$ for $x>0$, and $f(1)=7$.
(a) The function f has a critical point at $x=3$. At this point, does f have a relative minimum, a relative maximum, or neither? Justify your answer.
(b) On what intervals, if any, is the graph of f both decreasing and concave up? Explain your reasoning.
(c) Find the value of $f(3)$.
(a) $f^{\prime}(x)<0$ for $0<x<3$ and $f^{\prime}(x)>0$ for $x>3$

Therefore, f has a relative minimum at $x=3$.
(b) $f^{\prime \prime}(x)=e^{x}+(x-3) e^{x}=(x-2) e^{x}$
$f^{\prime \prime}(x)>0$ for $x>2$
$f^{\prime}(x)<0$ for $0<x<3$
Therefore, the graph of f is both decreasing and concave up on the interval $2<x<3$.
(c) $f(3)=f(1)+\int_{1}^{3} f^{\prime}(x) d x=7+\int_{1}^{3}(x-3) e^{x} d x$

$$
\begin{array}{cc}
u=x-3 & d v=e^{x} d x \\
d u=d x & v=e^{x}
\end{array}
$$

$$
f(3)=7+\left.(x-3) e^{x}\right|_{1} ^{3}-\int_{1}^{3} e^{x} d x
$$

$$
=7+\left.\left((x-3) e^{x}-e^{x}\right)\right|_{1} ^{3}
$$

$$
=7+3 e-e^{3}
$$

$2:\left\{\begin{array}{l}1: \text { minimum at } x=3 \\ 1: \text { justification }\end{array}\right.$
$3:\left\{\begin{array}{l}2: f^{\prime \prime}(x) \\ 1: \text { answer with reason }\end{array}\right.$

4: $\left\{\begin{array}{l}1: \text { uses initial condition } \\ 2: \text { integration by parts } \\ 1: \text { answer }\end{array}\right.$

