AP Live Mock Exam #1 - Question 1

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3fq1nUM

(a)
$$f'(t) \cdot v_P(t) + f(t) \cdot v_P'(t)$$

$$\frac{d}{dt} [f(t) \cdot v_p(t)] \Big|_{t=1} = f'(1) \cdot v_p(1) + f(1) \cdot v_p'(1) = f'(1) \cdot v_p(1) + f(1) \cdot a_p(1) = (2)(-29) + (1)(-10) = -68$$

(b)
$$\int_{0}^{2.8} v_{P}(t)dt \approx (0.3 - 0) \frac{\left(v_{P}(0.3) + v_{p}(0)\right)}{2} + (1 - 0.3) \frac{\left(v_{P}(1) + v_{p}(0.3)\right)}{2} + (2.8 - 1) \frac{\left(v_{P}(2.8) + v_{P}(1)\right)}{2}$$

$$= (0.3)\frac{(55+0)}{2} + (0.7)\frac{(-29+55)}{2} + (1.8)\frac{(55+(-29))}{2} = 40.75$$

(c)
$$\int_{-6}^{-2} f(t) dt = \int_{-6}^{5} f(t) dt - \int_{-2}^{5} f(t) dt = 7 - \int_{-2}^{5} f(t) dt = 7 - \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{4} + \frac{1}{4} + 2 + \left(9 - \frac{1}{4}\pi(3)^2\right)\right) = -4 + \frac{9}{4}\pi$$

 $\approx 3.068 \text{ or } 3.069$

(d)
$$2\int_{3}^{5} f'(t) dt + \int_{3}^{5} 4 dt = 2(f(5) - f(3)) + (4)(2) = 2(0 - (3 - \sqrt{5}) + 8 = 2 + 2\sqrt{5} \approx 6.472$$

(e) g'(t) = f(t) Candidates for a continuous function on Extreme Value Theorem: Endpoints and where g' = 0.

. ,	1
t	g(t)
-2	0
t-1	1/2
1/2	-1/4
5	$11 - \frac{9}{4}\pi$

The maximum value of g(t) is $g(5) = 11 - \frac{9}{4}\pi \approx 3.931$.

(f)
$$g'(t) = f(t)$$
; $g''(t) = f'(t)$

g''(3) = f'(3) < 0. The rate of change of g is decreasing at t = 3.

(g)
$$\lim_{t \to 1} \frac{e^t - 3f(t)}{v_P(t) - \cos(\pi t)} = \frac{e^1 - 3f(1)}{v_P(1) - \cos(\pi 1)} = \frac{e - 3(1)}{-29 - (-1)} = \frac{3 - e}{28} \approx 0.010$$

AP Live Mock Exam #2 – Question 1 (a)-(e)

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3dqwuh3

(a) g'(5) is the slope of the tangent line to the graph of g at x = 5. $g'(5) = -\frac{5}{3}$

(b)
$$b'(x) = 2x^2g'(x) + 4x g(x)$$
.

$$b'(5) = 2(5)^2 g'(5) + 4(5)g(5) = 50\left(-\frac{5}{3}\right) + 20(1) = \frac{-190}{3} \approx -63.333.$$

$$(c) w'(x) = \frac{(3h'(x) - 1)(2x + 1) - 2(3h(x) - x)}{(2x + 1)^2}$$

$$w'(5) = \frac{(3h'(5) - 1)(2(5) + 1) - 2(3h(5) - 5)}{(2(5) + 1)^2} = \frac{\left(3\left(-\frac{5}{3}\right) - 1\right)(11) - 2(3(1) - 5)}{(11)^2} = -\frac{62}{121}$$

$$\approx -0.512$$

(d)
$$M(x) = \frac{d}{dx} \left[\int_{0}^{2x} g(t) dt \right] = g(2x) \cdot 2 = 2g(2x).$$

$$M'(x) = 2g'(2x) \cdot 2 = 4g'(2x).$$

$$M'(2.5) = 4g'(2(2.5)) = 4g'(5) = 4\left(-\frac{5}{3}\right) = -\frac{20}{3}$$

(e)
$$M'(c) = \frac{M(b) - M(a)}{b - a}$$
;

$$M'(2.5) = \frac{M(4) - M(1)}{4 - 1} = \frac{\left(2g(2(4)) - 2g(2(1))\right)}{3} = \frac{2}{3}\left(g(8) - g(2)\right)$$

$$4g'(2(2.5)) = \frac{2}{3}(g(8) - g(2))$$

$$g(8) - g(2) = \frac{3}{2} \left(4 \left(-\frac{5}{3} \right) \right) = -10$$

AP Live Mock Exam #2 – Question 1 (f)-(g)

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3dqwuh3

(f) Because g is differentiable, g is continuous so, $\lim_{x\to 5} g(x) = g(5) = 1$.

Also,
$$\lim_{x \to 5} g(x) = \lim_{x \to 5} \frac{x + 5\cos\left(\frac{1}{5}\pi x\right)}{3 - \sqrt{f(x)}}$$
, so $\lim_{x \to 5} \frac{x + 5\cos\left(\frac{1}{5}\pi x\right)}{3 - \sqrt{f(x)}} = 1$

Because $\lim_{x\to 5} \left(x+5\cos\left(\frac{1}{5}\pi x\right)\right) = 5-5 = 0$, we must also have $\lim_{x\to 5} \left(3-\sqrt{f(x)}\right) = 0$.

Thus $\lim_{x\to 5} f(x) = 9$. Because f is differentiable, f is continuous, so $f(5) = \lim_{x\to 5} f(x) = 9$.

Also, because f is twice differentiable, f' is continuous, so $\lim_{x\to 5} f'(x) = f'(5)$ exists.

Using L'Hospital's Rule,

$$\lim_{x \to 5} \frac{x + 5\cos\left(\frac{1}{5}\pi x\right)}{3 - \sqrt{f(x)}} = \lim_{x \to 5} \frac{1 - \sin\left(\frac{1}{5}\pi x\right)}{-\frac{1}{2\sqrt{f(x)}}f'(x)} = \frac{1 - \sin\left(\frac{1}{5}\pi 5\right)}{-\frac{1}{2\sqrt{f(5)}}f'(5)} = \frac{1 - 0}{-\frac{1}{2\sqrt{9}}f'(5)} = 1$$

Thus f'(5) = -6.

(g) Because h and g are differentiable, h and g are continuous, so $\lim_{x\to 5} h(x) = h(5) = 1$ and $\lim_{x\to 5} g(x) = g(5) = 1$.

Because $h(x) \le k(x) \le g(x)$ for 4 < x < 6, it follows from the squeeze theorem that $1 = \lim_{x \to 5} h(x) \le \lim_{x \to 5} k(x) \le \lim_{x \to 5} g(x) = 1$ and $\lim_{x \to 5} k(x) = 1$.

Also,
$$1 = h(5) \le k(5) \le g(5) = 1$$
, so $k(5) = 1$.

Thus k is continuous at x = 5.

AP Live Mock Exam #2 – Ouestion 2

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3dqwuh3

(a)
$$f'(x) = \pi \cos(\pi x) - \frac{1}{2-x}$$

$$f'(1) = \pi \cos(\pi) - 1 = -\pi - 1$$

$$k'(x) = h'(f(x) + 2) \cdot f'(x)$$

$$k'(1) = h'(f(1) + 2) \cdot f'(1) = h'(\sin(\pi) + \ln(2 - 1) + 2) \cdot f'(1) = h'(2) \cdot f'(1)$$

$$= \left(-\frac{1}{3}\right)(-\pi - 1) = \frac{\pi + 1}{3} \approx 1.380 \text{ or } 1.381$$

(c)
$$\int_{-5}^{-1} g'(x)dx = g(x)\Big|_{-5}^{-1} = g(-1) - g(-5) = 1 - 10 = -9.$$

(d)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(h \left(-1 + \frac{5k}{n} \right) \right) \frac{5}{n} = \int_{-1}^{4} h(x) dx = \frac{1}{2} - \frac{3}{2} - \frac{1}{4} + \frac{1}{4} = -1$$

(e) Horizontal tangents will occur when g'(x) = 0. Since g is twice differentiable, g' is continuous and the Intermediate Value Theorem can be applied to g'(x) on the interval (-5, 0).

For
$$-4 < x < -3$$
, $g'(-4) = -1 < 0 < 4 = g'(-3)$
and for $-2 < x < -1$, $g'(-2) = 1 > 0 > -2 = g'(-1)$.

Thus g'(x) = 0 on both the interval -4 < x < -3 and -2 < x < -1.

Therefore g(x) has at least two horizontal tangents on the interval -5 < x < 0.