AP Live Mock Exam #1 — Question 1

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3fg1nUM
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AP Live Mock Exam #2 — Question 1 (a)-(e)

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3dgwuh3

(a) g'(5) is the slope of the tangent line to the graph of gatx = 5. g'(5) = —g

(b) b'(x) = 2x2g'(x) + 4x g(x).

b'(5) = 2(5)%g'(5) + 4(5)g(5) = 50 (—2) +200) = 29 L 63333,
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M'(x) =29'(2x) -2 = 49’ (2x). M'(2.5) = 4g'(2(2.5)) = 4g'(5) = 4(—5) = —?
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AP Live Mock Exam #2 — Question 1 (f)-(g)

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3dgwuh3

(f) Because g is differentiable, g is continuous so, lirré gx)=g(05)=1.
x—

x + 5 cos (% nx) x + 5 cos (%nx)
Also, lirré g(x) =lim i =
X—

,so lim
=5 3-4f(x) =5 3=4f(x)

1
Because lim (x + 5cos (E nx)) =5—-5 =0, we mustalso have lirré (3 — \/f(x)) = 0.
X—

x—5

Thus lirré f(x) = 9. Because f is differentiable, f is continuous, so f(5) = lirré f(x)=09.
X— X—
Also, because f is twice differentiable, f’ is continuous, so lirré f'(x) = f'(5) exists.
X—

Using L'Hospital's Rule,
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Thus f'(5) = —6.

(g) Because h and g are differentiable, h and g are continuous, so
lirré h(x) = h(5) =1 and lirré gx)=g(05)=1.
X— X—

Because h(x) < k(x) < g(x) for 4 < x < 6, it follows from the squeeze theorem that
1= ling h(x) < ling k(x) < lirré g(x) =1and lin% k(x) =1.
x— x— x— x—

Also, 1 =h(5) <k(5) <g(5) =1,s0k(5) =1.

Thus k is continuous at x = 5.
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AP Live Mock Exam #2 — Question 2

For what would be accepted as work and answers for the actual AP Exam, please watch: https://bit.ly/3dgwuh3
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(@) f'(x) = mcos(mx) — e

f'(1) =mcos(m) —1=-m—1
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(e) Horizontal tangents will occur when g'(x) = 0. Since g is twice differentiable, g’ is continuous and the

Intermediate Value Theorem can be applied to g'(x) on the interval (-5, 0).

For—-4<x< -3, g'(-4)=-1<0<4=g'(—-3)
and for -2 <x< -1, g'(-2)=1>0>-2=g'(-1).

Thus g'(x) = 0 on both the interval —4 < x < =3 and -2 < x < —1.

Therefore g(x)has at least two horizontal tangents on the interval =5 < x < 0.
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