WEDNESDAY May 6th, 2020: You will have 25 minutes to complete this problem plus 5 minutes to upload.

Graph of f

1. The continuous function f is defined on the closed interval $-2 \leq x \leq 5$ and consists of two line segments and a quarter circle centered at the point $(5,3)$, as shown in the figure above. The function g is given by $g(x)=\int_{-2}^{x} f(t) d t$.
(a) Find the average rate of change of g over the interval $[-2,5]$.

$$
\begin{aligned}
R_{\text {avg }}= & \frac{g(5)-g(-2)}{5-(-2)}=\frac{g(5)-(0)}{7}=\frac{1}{7} \int_{-2}^{5} f(t) d t \\
& =\frac{1}{7}\left[\frac{1}{2}(1)(1)-\frac{1}{2}(1)\left(\frac{3}{2}\right)+\frac{1}{2}(3)\left(\frac{3}{2}\right)+(3)^{2}-\frac{1}{4} \pi(3)^{2}\right]=\frac{1}{7}\left[\frac{1}{2}-\left(\frac{3}{4}\right)+\left(\frac{9}{4}\right)+(9)-\frac{9}{4} \pi\right] \\
& =\frac{1}{7}\left[11-\frac{9}{4} \pi\right]
\end{aligned}
$$

(b) Find $\lim _{x \rightarrow-1} \frac{f\left(x^{2}\right)+x}{f^{\prime}(x)-x}$.

$$
\begin{aligned}
& \lim _{x \rightarrow-1}\left[f\left(x^{2}\right)+x\right]=f(1)+(-1)=1-1=0 \quad \lim _{x \rightarrow-1}\left[f^{\prime}(x)-x\right]=f^{\prime}(-1)-(-1)=-1+1=0 \\
& \lim _{x \rightarrow-1} \frac{f\left(x^{2}\right)+x}{f^{\prime}(x)-x} \text { produces the indeterminant form } \frac{0}{0} \text { so we can use l'Hospital's Rule. } \\
& \lim _{x \rightarrow-1} \frac{f\left(x^{2}\right)+x}{f^{\prime}(x)-x}=\lim _{x \rightarrow-1} \underbrace{f^{\prime \prime}(x)-1}_{\text {l'Hospital's Rule }^{f^{\prime}\left(x^{2}\right)(2 x)+1}}=\frac{f^{\prime}(1)(-2)+1}{f^{\prime \prime}(-1)-1}=\frac{(2)(-2)+1}{(0)-1}=3
\end{aligned}
$$

(c) For $-2<x<5$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.
g has a point of inflection at $x=0$ and $x=2$ because $g^{\prime}(x)=f(x)$ changes from increasing to decreasing or vice versa.

This is a restatement of the problem.

Graph of f

1. The continuous function f is defined on the closed interval $-2 \leq x \leq 5$ and consists of two line segments and a quarter circle centered at the point $(5,3)$, as shown in the figure above. The function g is given by $g(x)=\int_{-2}^{x} f(t) d t$.
(d) Evaluate $\int_{2}^{4} f^{\prime}(6-2 x) d x$.

$$
\begin{aligned}
\int_{2}^{4} f^{\prime}(6-2 x) d x=-\frac{1}{2} \int_{2}^{4} f^{\prime}(\underbrace{6-2 x}_{u}) \underbrace{(-2 d x)}_{d u} & =-\frac{1}{2}[f(6-2 x)]_{2}^{4} \\
& =-\frac{1}{2}[f(-2)-f(2)]=-\frac{1}{2}[(1)-(3)]=1
\end{aligned}
$$

n	$h^{(n)}(0)$
2	3
3	$-\frac{23}{2}$
4	54

A function h has derivatives of all orders for all real numbers x. A portion of the graph of h is shown above, along with the line tangent to the graph of h at $x=0$. Selected derivatives of h at $x=0$ are given in the table above. Let R be the region bounded by the graphs of h and the line tangent to h at $x=0$, and the line $x=1$, as shown in the figure above.
(e) Write the third degree Taylor polynomial for h about $x=0$.

$$
\begin{aligned}
P_{3}(x)= & h(0)+h^{\prime}(0) x+\frac{h^{\prime \prime}(0)}{2!} x^{2}+\frac{h^{\prime \prime \prime}(0)}{3!} x^{3} \\
& =3-2 x+\frac{3}{2} x^{2}-\frac{23}{2(3 \cdot 2 \cdot 1)} x^{3}=3-2 x+\frac{3}{2} x^{2}-\frac{23}{12} x^{3}
\end{aligned}
$$

(f) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=-2$.

$$
V=\pi \int_{0}^{1}\left[(h(x)-(-2))^{2}-((-2 x+3)-(-2))^{2}\right] d x
$$

(g) Evaluate $\int_{1}^{\infty} \frac{1}{x^{p+1}} d x$, where $p>0$.

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{p+1}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b}\left(x^{(p+1)^{-1}}\right) d x=\lim _{b \rightarrow \infty} \int_{1}^{b}\left(x^{(-p-1)}\right) d x=\lim _{b \rightarrow \infty}\left[-\frac{1}{p} x^{-p}\right]_{1}^{b} \\
&=\lim _{b \rightarrow \infty}\left[\left(-\frac{1}{p} b^{-p}\right)-\left(-\frac{1}{p}(1)^{-p}\right)\right]=\left[\left(-\frac{1}{p}(0)\right)-\left(-\frac{1}{p}(1)^{-p}\right)\right]=\frac{1}{p}
\end{aligned}
$$

x	1	3	8	9
$f(x)$	6	4	5	2
$f^{\prime}(x)$	2	-2	3	-1

2. The function f is twice differentiable with selected values given in the table above.
(a) Let $g(x)=\frac{x^{2}}{f(x)}$. Find $g^{\prime}(3)$.

$$
\begin{aligned}
& g^{\prime}(x)=\frac{f(x)(2 x)-f^{\prime}(x)\left(x^{2}\right)}{(f(x))^{2}} \\
& g^{\prime}(3)=\frac{f(3)(2(3))-f^{\prime}(3)\left(3^{2}\right)}{(f(3))^{2}}=\frac{(4)(6)-(-2)(9)}{(4)^{2}}=\frac{24+18}{16}=\frac{42}{16}=\frac{21}{8}
\end{aligned}
$$

(b) Use a left Riemann sum with the three subintervals indicated in the table above to approximate the average value of $f(x)$ over the interval $[1,9]$.

$$
\begin{aligned}
\operatorname{Avg}=\frac{1}{8} \int_{1}^{9} f(x) d x \approx & \frac{1}{8}[f(1)(2)+f(3)(5)+f(8)(1)] \\
& =\frac{1}{8}[(6)(2)+(4)(5)+(5)(1)]=\frac{1}{8}[12+20+5]=\frac{37}{8}
\end{aligned}
$$

(c) Evaluate $\int_{3}^{8} x f^{\prime \prime}(x) d x$.

$$
\begin{gathered}
\int_{\underbrace{}_{u}}^{x} \underbrace{f^{\prime \prime}(x) d x}_{d v}=x f^{\prime}(x)-\int f^{\prime}(x) d x=x f^{\prime}(x)-f(x) \quad \begin{array}{l}
u=x \Rightarrow d u=d x \\
d v=f^{\prime \prime}(x) d x \Rightarrow v=f^{\prime}(x)
\end{array} \\
\begin{array}{c}
\int_{3}^{8} x f^{f^{\prime \prime}(x) d x=\left[x f^{\prime}(x)-f(x)\right]_{3}^{8}=\left[(8) f^{\prime}(8)-f(8)\right]-\left[(3) f^{\prime}(3)-f(3)\right]} \\
=[(8)(3)-(5)]-[(3)(-2)-(4)]=[19]-[-10]=29
\end{array}
\end{gathered}
$$

x	1	3	8	9
$f(x)$	6	4	5	2
$f^{\prime}(x)$	2	-2	3	-1

2. The function f is twice differentiable with selected values given in the table above.
(d) Let $H(x)=\int_{1}^{x^{2}} f(t) d t$. Find $H^{\prime}(x)$ and $H^{\prime \prime}(x)$. Explain why H could not have a relative extremum or a point of inflection at $x=3$.

$$
\begin{array}{ll}
H^{\prime}(x)=f\left(x^{2}\right)(2 x) \quad H^{\prime \prime}(x)=f\left(x^{2}\right)(2)+f^{\prime}\left(x^{2}\right)(2 x)^{2} \\
H^{\prime}(3)=f\left(3^{2}\right)(2(3))=(2)(6)=12 & H^{\prime \prime}(x)=(2)(2)+(-1)(6)^{2}=4-36=-32
\end{array}
$$

H could not have a relative extremum at $x=3$ because $H^{\prime}(3) \neq 0$ or undefined.
H could not have a point of inflection at $x=3$ because $H^{\prime \prime}(3) \neq 0$ or undefined.
(e) Let $f(a)=\sum_{n=0}^{\infty} a r^{n}$ where a and r are constants and $5 \leq \mathrm{a} \leq 8$. Find the value of r when $a=8$.

$$
\sum_{n=0}^{\infty} 8 r^{n}=f(8)=5 \quad \frac{8}{1-r}=5 \Rightarrow 8=5-5 r \Rightarrow-5 r=3 \Rightarrow r=-\frac{3}{5}
$$

2020 APCalc BC Practice Exam Question \# 2 B
a) $f(x)=f(6)+\int_{6}^{x} f^{\prime}(t) d t=-1+\int_{6}^{x} f^{\prime}(t) d t$

Minis at $E P_{s}$ or $C P_{s}$
$E P_{s}$:

$$
\begin{aligned}
& x=-5 \\
& f(5)=-1+\int_{6}^{-5} f(t) d t=-1+2+2 \pi-\frac{15}{2} \\
& x=10 \\
& f(10)=-1+\int_{6}^{10} f(t) d t=-1+4=3
\end{aligned}
$$

CPs (butonly care about rel. min):

$$
\begin{aligned}
& x=6 \\
& f(6)=-1
\end{aligned}
$$

Min value is $f(6)=-1$
b)

$$
\begin{array}{ll}
g(x)=\sin \left(3-f^{\prime}(x)\right) & \\
g^{\prime}(x)=\cos \left(3-f^{\prime}(x)\right) \cdot\left[-f^{\prime \prime}(x)\right] & g^{\prime}(6)=\cos \left(3-f^{\prime}(6)\right)\left(-f^{\prime \prime}(6)\right) \\
g^{\prime}(6)=\cos (3-0)(-2)=\cos (3)(-2)
\end{array}
$$

c)

(x, y)	Δx	$\frac{d y}{d x}$	$\Delta y=\frac{d y}{d x} \cdot \Delta x$	$(x+\Delta x, y+\Delta y)$
$(5,6)$	-1	$8 / 5$	$-8 / 5$	$(4,6-8 / 5)$
$(4,6-8 / 5)$	-1	$1 / 10$	$-11 / 10$	$\left(3,6^{-8 / 5-11 / 0)}\right.$

$$
\text { tog. from } x=5 \text { to } x=3 \text { in } 2 \text { steps }
$$

$$
\Delta x=-1
$$

$$
\frac{3-5}{2}=-1
$$

a Point on graph

$$
\begin{aligned}
& \frac{d y}{d x}=\left.\frac{y-f^{\prime}(x)}{x} \quad \frac{d y}{d x}\right|_{(5,6)}=\frac{6-f^{\prime}(5)}{5}=\frac{6-(-2)}{5}=\frac{8}{5} \\
& \left.\frac{d y}{d x}\right|_{(4,6-8 / 5)}=\frac{6-8 / 5-f^{\prime}(4)}{4}=\frac{6-8 / 5}{4}=\frac{11}{10} \\
& h(3) \approx 6-8 / 5-1 / 10
\end{aligned}
$$

All terms
d) $\int_{0}^{10}|V(t)| d t=2 \pi+2+4$ meters
$\int_{0}^{10}|v(t)| d t \Rightarrow$ is the total distance traveled by the particle in meters from $0-10$ seconds.
e) $k(x)=2 x-\int_{6}^{x} f(t) d t$

$$
\begin{aligned}
& K(6)=12-\int_{6}^{6} f(t) d t=12 \\
& K^{\prime}(x)=2-f(x) \rightarrow K^{\prime}(6)=2-f(6)=2-(-1)=3 \\
& K^{\prime \prime}(x)=-f^{\prime}(x) \rightarrow K^{\prime \prime}(6)=-f^{\prime}(6)=-(0)=0 \\
& K^{\prime \prime \prime}(x)=-f^{\prime \prime}(x) \rightarrow K^{\prime \prime \prime}(6)=-f^{\prime \prime}(6)=-2 \\
& T_{3}(x)=12+3(x-6)+\frac{0(x-6)^{2}}{2!}-\frac{2(x-6)^{3}}{3!}
\end{aligned}
$$

5 for 5: Calculus BC Day 1 Solutions

The function f is continuous on the interval $[-2,7]$ and consists of three line segments and a semi circle as shown in the figure above. The function g is defined by $g(x)=\int_{-2}^{x^{2}} f(t) d t$.

BC1: Let $h(x)=f(5 x-9)$. Find $h^{\prime}(3)$.

$$
h(x)=f\left(\begin{array}{ll}
5 x & 9
\end{array}\right)(5) \quad h(3)=f(5(3) \quad 9)(5)=5 f(6)=5(1)=5
$$

BC2: Evaluate $\int_{-1}^{0}\left[f^{\prime}(3-2 x)-4\right] d x$.

$$
\begin{aligned}
& \int_{-1}^{0}\left[f^{\prime}(3-2 x)-4\right] d x=-\frac{1}{2} \int_{-1}^{0}[f^{\prime}(\underbrace{3-2 x}_{u})](-2 d x)-\int_{-1}^{0}[4] d x \\
& =-\frac{1}{2}[f(3-2 x)]_{-1}^{0}-[4 x]_{-1}^{0}=-\frac{1}{2}[f(3)-f(5)]-[-4(-1)]=-\frac{1}{2}[(2)-(-2)]-[4]=-6
\end{aligned}
$$

BC3: Write the 2nd degree Taylor polynomial for g about $x=2$.

$$
\begin{aligned}
g(2) & =\int_{2}^{4} f(t) d t=\left[\frac{1}{2}(2)^{2}+\frac{1}{2}(2)(2)\right]=2+2 \\
g^{\prime}(x) & =f\left(x^{2}\right)(2 x) \Rightarrow g^{\prime}(2)=f(4)(4)=(0)(4)=0 \\
g^{\prime \prime}(x) & =f\left(x^{2}\right)(2)+f^{\prime}\left(x^{2}\right)(2 x)^{2} \Rightarrow g^{\prime \prime}(2)=f(4)(2)+f^{\prime}(4)(4)^{2}=16 f^{\prime}(4)=16(2)=32 \\
P_{2}(x) & =g(2)+g^{\prime}(2)\left(\begin{array}{ll}
x & 2
\end{array}\right)+\frac{g^{\prime \prime}(2)}{2!}\left(\begin{array}{ll}
x & 2
\end{array}\right)^{2}=\left(\begin{array}{ll}
2 & +2
\end{array}\right)+\left(\begin{array}{ll}
0
\end{array}\right)\left(\begin{array}{ll}
x & 2
\end{array}\right)+\frac{32}{2!}\left(\begin{array}{ll}
x & 2
\end{array}\right)^{2} \\
& =\left(\begin{array}{ll}
2 & +2) \\
16 & 2
\end{array}\right)^{2}
\end{aligned}
$$

t seconds	0	1	4	6
$P(t)$ people per second	8	3	5	10

For $0 \leq t \leq 6$ seconds, people enter a school at the rate $P(t)$, measured in people per second.

BC4: Approximate $P^{\prime}(5)$. Using correct units, interpret the meaning of $P^{\prime}(5)$ in the context of the problem.
$P(5) \frac{P(6) P(4)}{64}=\frac{(10)(5)}{64}=\frac{5}{2}$
The rate people enter a school is changing at a rate of $P(5)$ people per second per second at $t=5$ seconds.

BC5: Use a left Riemann sum with the three subintervals indicated by the table above to approximate $\frac{1}{6} \int_{0}^{6} P(t) d t$. Using correct units, interpret the meaning of $\frac{1}{6} \int_{0}^{6} P(t) d t$ in the context of the problem. $\frac{1}{6} \int_{0}^{6} P(t) d t \approx \frac{1}{6}[P(0)(1)+P(1)(3)+P(4)(2)]=\frac{1}{6}[(8)(1)+(3)(3)+(5)(2)]=\frac{27}{6}=\frac{9}{2}$ $\frac{1}{6} \int_{0}^{6} P(t) d t$ is the average rate people enter a school, in people per second over the interval $t=0$ to $t=6$ seconds.

5 for 5: Calculus BC Day 2 Solutions

x	1	4	6	9
$g(x)$	3	1	0	-1
$g^{\prime}(x)$	2	0	1	3

A portion of the graph of f^{\prime}, the derivative of the twice differentiable function f, is shown in the figure above. The areas of the regions bounded by the graph of f^{\prime} and the x axis are labeled. It is known that $f(1)=-2$.

The function g is twice differentiable. Selected values of g and g^{\prime} are shown in the table above.

BC1: Find all values of x in the open interval $-3<x<8$ for which the graph of f has horizontal tangent line. For each value of x, determine whether f has a relateive minimum, relative maximum, or neither a minimum nor a maximum at the x value. Justify your answers.
horizontal tangent line $\quad f(x)=0 \quad x=1,6$
At $x=1$ there is a relative maximum because $f(x)$ changes from positive to negative.
At $x=6$ there is a relative minimum because $f(x)$ changes from negative to positive.
BC2: Find the minimum value of f on the closed interval $[-3,8]$. Justify your answer..
relative minimum candidates: $x=6$

x	$f(x)$	
3	$2{\underset{3}{3}}_{1}^{f}(x) d x=2$	$(10)=12$
6	$2+{ }_{1}^{6} f(x) d x=2$	$(14)=16$
8	$2+{ }_{8}^{8} f(x) d x=2$	$(14)+6=10$

endpoints: $x=3,8$

5 for 5: Calculus BC Day 2

x	1	4	6	9
$g(x)$	3	1	0	-1
$g^{\prime}(x)$	2	0	1	3

A portion of the graph of f^{\prime}, the derivative of the twice differentiable function f, is shown in the figure above. The areas of the regions bounded by the graph of f^{\prime} and the x axis are labeled. It is known that $f(1)=-2$.

The function g is twice differentiable. Selected values of g and g^{\prime} are shown in the table above.
BC3: Let $h(x)=\frac{e^{g(x)}}{3 x}$. Find $h^{\prime}(6)$.

$$
\begin{aligned}
& h(x)=\frac{(3 x)\left(e^{g(x)}\right)(g(x))(3)\left(e^{g(x)}\right)}{(3 x)^{2}} \\
& h(6)=\frac{(18)\left(e^{g(6)}\right)(g(6))(3)\left(e^{g(6)}\right)}{(18)^{2}}=\frac{(18)\left(e^{0}\right)(1)(3)\left(e^{0}\right)}{(18)^{2}}=\frac{(18)(3)}{(18)^{2}}=\frac{15}{(18)^{2}}=\frac{5}{108}
\end{aligned}
$$

BC4: For $t \geq 0$, a particle moves along a straight path with velocity $v(t)=f^{\prime}(t)$. Find the total distance traveled by the particle from $t=1$ to $t=8$.

$$
T=|v(t)| d t={\underset{1}{8}}_{8}^{8} f(t) \mid d t=14+6=20
$$

BC5: Evaluate $\int_{1}^{9} x g^{\prime \prime}(x) d x$.

$$
\begin{gathered}
\int_{\underbrace{}_{u}}^{x} \underbrace{g^{\prime \prime}(x) d x}_{d v}=x g^{\prime}(x)-\int g^{\prime}(x) d x \quad \begin{array}{l}
u=x \Rightarrow d u=d x \\
d v=g^{\prime \prime}(x) d x \Rightarrow v=g^{\prime}(x)
\end{array} \\
=x g^{\prime}(x)-g(x)+C \\
\int_{1}^{9} x g^{\prime \prime}(x) d x=\left[x g^{\prime}(x)-g(x)\right]_{1}^{9}=\left[\left((9) g^{\prime}(9)-g(9)\right)-\left((1) g^{\prime}(1)-g(1)\right)\right] \\
=[((9)(3)-(-1))-((2)-(3))]=[(28)-(-1)]=29
\end{gathered}
$$

5 for 5 Calculus BC Day 3
BCl

$$
\begin{array}{ll}
g(3)=5 & y-5=-2(x-3) \\
g^{\prime}(3)=-2 & y=-2(x-3)+5 \\
& \text { when } x=2 \quad y=-2(2-3)+5
\end{array}
$$

$B C 2$

$$
\begin{aligned}
& \lim _{x \rightarrow-1} \frac{\int_{-3}^{x^{2}} f(t) d t}{x^{3}+1} \Rightarrow \frac{\int_{-3}^{1} f(t) d t}{0} \Rightarrow \frac{0}{0} \quad \text { L'Hopital's Rule! } \\
& \lim _{x \rightarrow-1} \frac{\int_{-3}^{x^{2}} f(t) d t}{x^{3}+1} \stackrel{H}{=}=\lim _{x \rightarrow-1} \frac{f\left(x^{2}\right) \cdot 2 x}{3 x^{2}}=\frac{f(1) \cdot(-2)}{3}=\frac{-2}{3}
\end{aligned}
$$

$B C 3 \quad p(x)= \begin{cases}f(x) g^{\prime}(x) & x<3 \\ 4 f^{\prime}(x-3) & x \geq 3\end{cases}$
1.

$$
\begin{gathered}
\lim _{x \rightarrow 3^{-}} p(x)=\lim _{x \rightarrow 3^{+}} p(x) \\
\lim _{x \rightarrow 3^{-}} f(x) g^{\prime}(x)=\lim _{x \rightarrow 3^{+}} 4 f^{\prime}(x-3) \\
(-1)(-2)=4\left(\frac{1}{2}\right) \\
2=2
\end{gathered}
$$

2. $P(3)=4 f^{\prime}(x-3)=2$
3. $P(3)=\lim _{x \rightarrow 3} P(x)=2$
$\therefore p(x)$ is continuous at $x=3$.
BC
No matter what a and p are $f(x)$ decreases as $x \rightarrow \infty$
cross sections are squares $\quad v=\int_{a}^{b}$ Area dx $=\int_{7}^{2}[f(x)+3]^{2} d x$
$B C B \quad \sum_{n=7}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{a}{x^{3 p+2}}=a \sum_{n=7}^{\infty} \frac{1}{x^{3 p}+2}$ this is a p-series; p-series converge if $b>1$ $4 \frac{1}{x^{6}}$
$3 p+2>1$
$3 p>-1$
$\rho>-\frac{1}{3}$ this makes the power >1
