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WEDNESDAY	May	6th, 2020:		You	will	have	25	minutes	to	complete	this	problem	plus	5	minutes	to	upload. 

 

 

 

 

 

 

𝟏.		The	continuous	function	𝑓	is	defined	on	the	closed	interval − 2 ≤ 𝑥 ≤ 5	and	consists	of	two	line 
					segments	and	a	quarter	circle	centered	at	the	point	(5, 3), as	shown	in	the	figure	above.		The	function 

					𝑔	is	given	by	𝑔(𝑥) = b 𝑓(𝑡)𝑑𝑡
!

"#
. 

 
					(a)	Find	the	average	rate	of	change	of	𝑔	over	the	interval	[−2, 5]. 

   

 

					(b)	Find	 lim
!→"%

𝑓(𝑥#) + 𝑥
𝑓&(𝑥) − 𝑥. 

   

	 
					(c)	For − 2 < 𝑥 < 5, find	all	values	of	𝑥	for	which	the	graph	of	𝑔	has	a	point	of	inflection.		Explain 
													your	reasoning. 
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g   has a point of inflection at  x = 0  and  x = 2  because  ′g x( ) = f x( ) changes from increasing to 

decreasing or vice versa.



This is a restatement of the problem. 

 

 

 

 

 

 

𝟏.		The	continuous	function	𝑓	is	defined	on	the	closed	interval − 2 ≤ 𝑥 ≤ 5	and	consists	of	two	line 
					segments	and	a	quarter	circle	centered	at	the	point	(5, 3), as	shown	in	the	figure	above.		The	function 

					𝑔	is	given	by	𝑔(𝑥) = b 𝑓(𝑡)𝑑𝑡
!

"#
. 

 

					(d)	Evaluate	b 𝑓&(6 − 2𝑥)𝑑𝑥
'

#
. 
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A	function	ℎ	has	derivatives	of	all	orders	for	all	real	numbers	𝑥.		A	portion	of	the	graph	of	ℎ	is	shown 
above, along	with	the	line	tangent	to	the	graph	of	ℎ	at	𝑥 = 0.		Selected	derivatives	of	ℎ	at	𝑥 = 0	are	given 
in	the	table	above.			𝐿𝑒𝑡	𝑅	be	the	region	bounded	by	the	graphs	of	ℎ	and	the	line	tangent	to	ℎ	at	𝑥 = 0,	 
and	the	line		𝑥 = 1, as	shown	in	the	figure	above. 
 
					(e)	Write	the	third	degree	Taylor	polynomial	for	ℎ	about	𝑥 = 0. 

   

					(f)	Write, but	do	not	evaluate, an	integral	expression	that	gives	the	volume	of	the	solid	generated	 
											when	R	is	rotated	about	the	horizontal	line	𝑦 = −2. 
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1

𝑥()% 𝑑𝑥
*

%
, where	𝑝 > 0. 
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𝑥 1 3 8 9 

𝑓(𝑥) 6 4 5 2 

𝑓!(𝑥) 2 −2 3 −1 
 

𝟐.		The	function	𝑓	is	twice	differentiable	with	selected	values	given	in	the	table	above. 
 

					(𝐚)	Let	𝑔(𝑥) =
𝑥"

𝑓(𝑥) .		Find	𝑔
!(3). 

   

					(𝐛)	Use	a	left	Riemann	sum	with	the	three	subintervals	indicated	in	the	table	above	to	approximate	 
													the	average	value	of	𝑓(𝑥)	over	the	interval	[1, 9]. 

   

						(𝐜)	Evaluate	T 𝑥𝑓!!(𝑥)𝑑𝑥
#

$
. 
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𝑥 1 3 8 9 

𝑓(𝑥) 6 4 5 2 

𝑓!(𝑥) 2 −2 3 −1 
 

𝟐.		The	function	𝑓	is	twice	differentiable	with	selected	values	given	in	the	table	above. 
 

						(𝐝)	Let	𝐻(𝑥) = T 𝑓(𝑡)𝑑𝑡
%!

&
.		Find	𝐻!(𝑥)	and	𝐻!!(𝑥).		Explain	why	𝐻	could	not	have	a	relative	 

													extremum		or	a	point	of	inflection	at	𝑥 = 3.	 

   

						(𝐞)	Let	𝑓(𝑎) = 	\𝑎𝑟'
(

')*

	where	𝑎	and	𝑟	are	constants	and	5 ≤ a ≤ 8. .		Find	the	value	of	𝑟	when	𝑎 = 8. 

   

′H x( ) = f x2( ) 2x( ) ′′H x( ) = f x2( ) 2( )+ ′f x2( ) 2x( )2

′H 3( ) = f 32( ) 2 3( )( ) = 2( ) 6( ) = 12 ′′H x( ) = 2( ) 2( )+ −1( ) 6( )2
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H  could not have a relative extremum at  x = 3  because  ′H 3( ) ≠ 0 or undefined.

H  could not have a point of inflection at  x = 3  because  ′′H 3( ) ≠ 0 or undefined.
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 ¢h x( ) = ¢f 5x - 9( ) 5( ) Þ ¢h 3( ) = ¢f 5 3( )- 9( ) 5( ) = 5 ¢f 6( ) = 5 1( ) = 5 

 

  

 

 

g 2( ) = f t( )dt
-2

4

ó
õ

=
1

2
p 2( )

2

+
1

2
2( ) 2( )

é

ë
ê

ù

û
ú = 2p + 2

¢g x( ) = f x2( ) 2x( )Þ ¢g 2( ) = f 4( ) 4( ) = 0( ) 4( ) = 0

¢¢g x( ) = f x2( ) 2( )+ ¢f x2( ) 2x( )
2

Þ ¢¢g 2( ) = f 4( ) 2( )+ ¢f 4( ) 4( )
2

= 16 ¢f 4( ) = 16 -2( ) = -32

P
2
x( ) = g 2( )+ ¢g 2( ) x - 2( )+

¢¢g 2( )
2!

x - 2( )
2

= 2p + 2( )+ 0( ) x - 2( )+
-32

2!
x - 2( )

2

= 2p + 2( )-16 x - 2( )
2

  

 

  

Solutions 
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The rate people enter a school is changing at a rate of  ¢P 5( )  people per second per second 

at t = 5 seconds.
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 is the average rate people enter a school, in people per second over the 

interval  t = 0  to  t = 6  seconds.

 



 

 

 

horizontal tangent line Þ ¢f x( ) = 0 Þ x = 1,6

At  x = 1  there is a relative maximum because  ¢f x( )  changes from positive to negative.

At  x = 6  there is a relative minimum because  ¢f x( )  changes from negative to positive.

 

 

 

relative minimum candidates: x = 6 endpoints: x = -3,8
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Solutions 
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