Final Practice FRQ Problems
la. $\int_{-1}^{2} f^{\prime}(6-4 x) d x=\left.\left[\frac{f(6-4 x)}{-4}\right]\right|_{-1} ^{2}=\frac{f(-2)}{-4}-\frac{f(10)}{-4}=0-0=0$
or u-sub: $u=6-4 x$

$$
\frac{d u}{d x}=-4
$$

$$
x=-1 \rightarrow u=10
$$

$$
\begin{aligned}
& \int_{10}^{-2} f^{\prime}(u) \cdot\left(-\frac{1}{4}\right) d u=-\left.\frac{1}{4} f(u)\right|_{10} ^{-2} \\
&=-\frac{1}{4} f(-2)+\frac{1}{4} f(10)=0
\end{aligned}
$$

$$
-\frac{1}{4} d u=d x
$$

1.6. $\lim _{x \rightarrow 0} \frac{\int_{-4}^{2 x} f(t) d t}{3 x^{2}+x} \Rightarrow \frac{\int_{-4}^{0} f(t) d t}{\text { derivorintegopal }} \Rightarrow \frac{0}{0} \quad$ L'Hopital's Rule

$$
\lim _{x \rightarrow 0} \frac{\int_{-4}^{2 x} f(t) d t}{3 x^{2}+x} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{f(2 x) \cdot 2}{6 x+1}=\frac{f(0) \cdot 2}{1}=8
$$

Ic. g has a relative minimum when $g^{\prime}(x)=f(x)$ changes from negative to positive. This occurs when $x=-2$

Id.

$$
\begin{aligned}
& Q(-2)=4-g(2)=4-\int_{-2}^{-2} f(t) d t=4-\theta=+4 \\
& Q^{\prime}(-2)=2(-2)-g^{\prime}(-2)=-4-f(-2)=-4-0=-4 \\
& Q^{\prime \prime}(-2)=2-g^{\prime}(-2)=2-f^{\prime}(-2)=2-2=0 \\
& T_{2}(x)=4-4(x+2)+\frac{0(x+2)^{2}}{2!}=4-4(x+2)
\end{aligned}
$$

$2 a$.

$$
\begin{aligned}
& \int_{-2}^{2} \frac{1}{2} \times g^{\prime \prime}(x) d x \quad \begin{aligned}
u & =\frac{1}{2} x
\end{aligned} d v=g^{\prime \prime}(x) d x \\
&=\frac{1}{2} \times\left. g^{\prime}(x)\right|_{-2} ^{2}-\int_{-2}^{2} \frac{1}{-2} g^{\prime}(x) d x=\left[g^{\prime} d x \quad v=g^{\prime}(x)-\left(-g^{\prime}(-2)\right)\right]-\left.\left[\frac{1}{2} g(x)\right]\right|_{-2} ^{2} \\
&=-2+6-\left[\frac{1}{2} g(2)-\frac{1}{2} g(-2)\right] \\
&=4-\left[\frac{1}{2} \cdot 4-\frac{1}{2}(-3)\right]
\end{aligned}
$$

26. $\int_{-1}^{1} f^{\prime}(1-2 x) d x=\left.\left[\frac{f(1-2 x)}{-2}\right]\right|_{-1} ^{1}=\left[\frac{f(-1)}{-2}-\left(\frac{f(3)}{-2}\right)\right]=\frac{-1}{-2}-\left(\frac{2}{-2}\right)=\frac{1}{2}+1$ OR u-sub: $\begin{array}{rll}u=1-2 x & x=1 \rightarrow u=-1 & \int_{3}^{-1} f^{\prime}(u)\left(-\frac{1}{2}\right) d u=\left.\left[-\frac{1}{2} f(u)\right]\right|_{3} ^{-1} \\ d u\end{array}$

$$
\begin{aligned}
& \frac{d u}{d x}=-2 \quad x=-1 \rightarrow u=3 \\
& -\frac{1}{2} d u=d x
\end{aligned}
$$

$-\frac{1}{2} d a=d x$

$$
\begin{aligned}
& =-\frac{1}{2} f(-1)+\frac{1}{2} f(3) \\
& =-\frac{1}{2}(-1)+\frac{1}{2} \cdot 2=\frac{1}{2}+1
\end{aligned}
$$

$2 c \quad K(x)=\int_{1}^{\cos (x)} 2 g(x) d x$

$$
\begin{aligned}
& K^{\prime}(x)=2 g(\cos (x)) \cdot(-\sin (x)) \\
& K^{\prime}\left(\frac{\pi}{2}\right)=2 g\left(\cos \left(\frac{\pi}{2}\right)\right) \cdot(-\sin (\pi / 2))=2[g(0)] \cdot\left(-\sin \left(\frac{\pi}{2}\right)\right)=2 \cdot 1 \cdot(-1)=-2
\end{aligned}
$$

$2 d . \quad \sum_{n=1}^{\infty} \frac{b}{n^{12 p-1}}=b \sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2 p}-1}} \quad p$-series. p-series converge if the exponent is >1

$$
\begin{aligned}
\sqrt{2} p-1 & >1 \\
\sqrt{2} p & >2 \\
p & >\frac{2}{\sqrt{2}}
\end{aligned}
$$

5 for 5: Calculus AB Day 1 Solutions

The function f is continuous on the interval $[-2,7]$ and consists of three line segments and a semi circle as shown in the figure above. The function g is defined by $g(x)=\int_{-2}^{x^{2}} f(t) d t$.

AB1: Find $g(2), g^{\prime}(2)$, and $g^{\prime \prime}(2)$.

$$
\begin{aligned}
& g(2)=\int_{-2}^{4} f(t) d t=\left[\frac{1}{2} p(2)^{2}+\frac{1}{2}(2)(2)\right]=2 p+2 \\
& g^{\prime}(x)=f\left(x^{2}\right)(2 x) \Rightarrow g^{\prime}(2)=f(4)(4)=(0)(4)=0 \\
& g^{\prime \prime}(x)=f\left(x^{2}\right)(2)+f^{\prime}\left(x^{2}\right)(2 x)^{2} \Rightarrow g^{\prime \prime}(2)=f(4)(2)+f^{\prime}(4)(4)^{2}=16 f^{\prime}(4)=16(-2)=-32
\end{aligned}
$$

AB2: Let $h(x)=f(5 x-9)$. Find $h^{\prime}(3)$.

$$
h \phi(x)=f \phi(5 x-9)(5) P \quad h \phi(3)=f \phi(5(3)-9)(5)=5 f \phi(6)=5(1)=5
$$

AB3: Evaluate $\int_{-1}^{0}\left[f^{\prime}(3-2 x)-4\right] d x$.

$$
\begin{aligned}
& \int_{-1}^{0}\left[f^{\prime}(3-2 x)-4\right] d x=-\frac{1}{2} \int_{-1}^{0}[f^{\prime}(\underbrace{3-2 x}_{u})](-2 d x)-\int_{-1}^{0}[4] d x \\
& =-\frac{1}{2}[f(3-2 x)]_{-1}^{0}-[4 x]_{-1}^{0}=-\frac{1}{2}[f(3)-f(5)]-[-4(-1)]=-\frac{1}{2}[(2)-(-2)]-[4]=-6
\end{aligned}
$$

t seconds	0	1	4	6
$P(t)$ people per second	8	3	5	10

For $0 \leq t \leq 6$ seconds, people enter a school at the rate $P(t)$, measured in people per second.

AB4: Approximate $P^{\prime}(5)$. Using correct units, interpret the meaning of $P^{\prime}(5)$ in the context of the problem.

$$
P \phi(5) » \frac{P(6)-P(4)}{6-4}=\frac{(10)-(5)}{6-4}=\frac{5}{2}
$$

The rate people enter a school is changing at a rate of $P \phi(5)$ people per second per second at $t=5$ seconds.

AB5: Use a left Riemann sum with the three subintervals indicated by the table above to approximate $\int_{0}^{6} P(t) d t$. $\int_{0}^{6} P(t) d t \approx P(0)(1)+P(1)(3)+P(4)(2)=(8)(1)+(3)(3)+(5)(2)=27$

5 for 5: Calculus AB Day 2 Solutions

x	1	4	6	9
$g(x)$	3	1	0	-1
$g^{\prime}(x)$	2	0	1	3

A portion of the graph of f^{\prime}, the derivative of the twice differentiable function f, is shown in the figure above. The areas of the regions bounded by the graph of f^{\prime} and the x axis are labeled. It is known that $f(1)=-2$.

The function g is twice differentiable. Selected values of g and g^{\prime} are shown in the table above.

AB1: Find all values of x in the open interval $-3<x<8$ for which the graph of f has horizontal tangent line. For each value of x, determine whether f has a relateive minimum, relative maximum, or neither a minimum nor a maximum at the x value. Justify your answers.
horizontal tangent line $\mathrm{P} \quad f(\phi)=0 \mathrm{P} \quad x=1,6$
At $x=1$ there is a relative maximum because $f \varnothing(x)$ changes from positive to negative.
At $x=6$ there is a relative minimum because $f(x)$ changes from negative to positive.
AB2: Find the minimum value of f on the closed interval $[-3,8]$. Justify your answer. relative minimum candidates: $x=6 \quad$ endpoints: $x=-3,8$

x	$f(x)$
-3	$-2-\frac{1}{\mathrm{O}} f(\mathrm{l} x) d x=-2-(10)=-12$
6	$-2+\stackrel{6}{O}_{\mathrm{O}}(\phi(x) d x=-2-(14)=-16$
8	$-2+\grave{\mathrm{O}} f(\mathrm{f}) d x=-2-(14)+6=-10$

5 for 5: Calculus AB Day 2

x	1	4	6	9
$g(x)$	3	1	0	-1
$g^{\prime}(x)$	2	0	1	3

A portion of the graph of f^{\prime}, the derivative of the twice differentiable function f, is shown in the figure above. The areas of the regions bounded by the graph of f^{\prime} and the x axis are labeled. It is known that $f(1)=-2$.

The function g is twice differentiable. Selected values of g and g^{\prime} are shown in the table above.
AB3: Let $h(x)=\frac{e^{g(x)}}{3 x}$. Find $h^{\prime}(6)$.

$$
\begin{aligned}
& h \phi(x)=\frac{(3 x)\left(e^{g(x)}\right)(g \phi(x))-(3)\left(e^{g(x)}\right)}{(3 x)^{2}} \\
& h d(6)=\frac{(18)\left(e^{g(6)}\right)(g \varnothing(6))-(3)\left(e^{g(6)}\right)}{(18)^{2}}=\frac{(18)\left(e^{0}\right)(1)-(3)\left(e^{0}\right)}{(18)^{2}}=\frac{(18)-(3)}{(18)^{2}}=\frac{15}{(18)^{2}}=\frac{5}{108}
\end{aligned}
$$

AB4: Is there a time $c, 1<c<9$, such that $g^{\prime}(c)=-\frac{1}{2}$? Give a reason for your answer.

$$
\frac{g(9)-g(1)}{9-1}=\frac{-1-3}{8}=\frac{-4}{8}=-\frac{1}{2}
$$

g is differentiable and therefore continuous for all x on the interval $1<x<9$, so the Mean Value Theorem guarantees there is at least one number c between 1 and 9 such that $g \not(c)=\frac{g(9)-g(1)}{9-1}=-\frac{1}{2}$.
AB5: Evaluate $\int_{1}^{4}[g(x)]^{2} g^{\prime}(x) d x$.
$\int_{1}^{4} \underbrace{[g(x)]^{2}}_{u} \underbrace{g^{\prime}(x) d x}_{d u}=\int_{g(1)}^{g(4)} u^{2} d u=\left[\frac{1}{3} u^{3}\right]_{3}^{1}=\frac{1}{3}\left[(1)^{3}-(3)^{3}\right]=\frac{1}{3}[1-27]=-\frac{26}{3}$

x	0	1	3	5
$g(x)$	2	0	5	-1
$g^{\prime}(x)$	7	4	-2	3

The function f is defined and continuous for all $x \geq-3$ except at $x=3$. A portion of the graph of f, consisting of three linear pieces is shown in the figure above.

The function g is differentiable for all values of x. Selected values of g and g^{\prime}, the derivative of g, are given in the table above.

AB1: Write an equation of the line tangent to g at $x=3$. Use this tangent line to approximate $g(2)$.

$$
T(x)=g(3)+g^{\prime}(3)(x-3)=5-2(x-3) \quad g(2) \approx T(2)=5-2(2-3)=5-2(-1)=7
$$

AB2: Evaluate $\lim _{x \rightarrow-1} \frac{\int_{-3}^{x^{2}} f(t) d t}{x^{3}+1}$

$$
\begin{aligned}
& \lim _{x \rightarrow-1} \int_{-3}^{x^{2}} f(t) d t=\lim _{x \rightarrow-1} \int_{-3}^{1} f(t) d t=\left[-\frac{1}{2}(2)(1)+\frac{1}{2}(2)(1)\right]=[-1+1]=0 \quad \lim _{x \rightarrow-1}\left(x^{3}+1\right)=-1+1=0 \\
& \lim _{x \rightarrow-1} \frac{\int_{-3}}{x^{2}} f(t) d t \\
& x^{3}+1
\end{aligned} \text { produces the indeterminant form } \frac{0}{0} \text { so we can apply l'Hospital's Rule }
$$

$$
\lim _{x \rightarrow-1} \frac{\int_{-3}^{x^{2}} f(t) d t}{x^{3}+1}=\underbrace{\lim _{x \rightarrow-\rightarrow} \frac{f\left(x^{2}\right)(2 x)}{3 x^{2}}}_{\text {r'Hospital's Rule }}=\frac{f\left((-1)^{2}\right)(2(-1))}{3(-1)^{2}}=\frac{(1)(-2)}{3(1)}=\frac{-2}{3}
$$

AB3: Let $k(x)=g(f(x))$. Find $k^{\prime}(2)$.

$$
k^{\prime}(x)=g^{\prime}(f(x))\left(f^{\prime}(x)\right) \quad k^{\prime}(2)=g^{\prime}(f(2))\left(f^{\prime}(2)\right)=g^{\prime}(0)(-1)=(7)(-1)=-7
$$

x	0	1	3	5
$g(x)$	2	0	5	-1
$g^{\prime}(x)$	7	4	-2	3

The function f is defined and continuous for all $x \geq-3$ except at $x=3$. A portion of the graph of f, consisting of three linear pieces is shown in the figure above.

The function g is differentiable for all values of x. Selected values of g and g^{\prime}, the derivative of g, are given in the table above.

AB4: Let $p(x)=\left\{\begin{array}{ll}f(x) g^{\prime}(x) & x<3 \\ 4 f^{\prime}(x-3) & x \geq 3\end{array}\right.$. Is $p(x)$ continuous at $x=3$? Why or why not?

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}}\left[f(x) g^{\prime}(x)\right]=(-1) g^{\prime}(3)=(-1)(-2)=2 \lim _{x \rightarrow 3^{+}}\left[4 f^{\prime}(x-3)\right]=4 f^{\prime}(0)=(4)\left(\frac{1}{2}\right)=2 \\
& p(3)=4 f^{\prime}(0)=(4)\left(\frac{1}{2}\right)=2 \\
& p(x) \text { is continuous at } x=3 \text { because } p(3)=\lim _{x \rightarrow 3^{-}} p(x)=\lim _{x \rightarrow 3^{+}} p(x) .
\end{aligned}
$$

AB5: If $\int_{-3}^{10} f(x) d x=5$, find the value of $\int_{7}^{10} f(x) d x$. Show the work that leads to your answer.

$$
\begin{aligned}
& \int_{-3}^{10} f(x) d x=\int_{-3}^{7} f(x) d x+\int_{7}^{10} f(x) d x \\
& 5=\left[-\frac{1}{2}(2)(1)+\frac{1}{2}(2)(1)+(4)(2)\right]+\int_{7}^{10} f(x) d x \\
& 5=[8]+\int_{7}^{10} f(x) d x \Rightarrow \int_{7}^{10} f(x) d x=-3
\end{aligned}
$$

5 for 5: Calculus AB Day 4

The function f is differentiable on the interval $[-2,12]$ and consists of three line segments as shown in the figure above. It is known that $f(4)=14$
AB1: On what open intervals is the graph of f both decreasing and concave down? Give a reason for your answer.
f is decreasing $\Rightarrow f^{\prime}(x) \leq 0 \quad f$ is concave down $\Rightarrow f^{\prime}(x)$ is decreasing
f is decreasing and concave down on the open intervals $(1,7)$ and $(9,12)$.
AB2: Let $g(x)=f(x) f^{\prime}(x)$. Find $g^{\prime}(4)$.

$$
\begin{aligned}
& g^{\prime}(x)=f^{\prime}(x) f^{\prime}(x)+f(x) f^{\prime \prime}(x) \\
& g^{\prime}(4)=f^{\prime}(4) f^{\prime}(4)+f(4) f^{\prime \prime}(4)=(-2)(-2)+(14)\left(-\frac{2}{3}\right)=4-\frac{28}{3}
\end{aligned}
$$

AB3: Evaluate $\int_{-2}^{12}\left[3-2 f^{\prime}(x)\right] d x$.

$$
\begin{gathered}
\int_{-2}^{12}\left[3-2 f^{\prime}(x)\right] d x=\int_{-2}^{12}[3] d x-\int_{-2}^{12}\left[2 f^{\prime}(x)\right] d x=[3 x]_{-2}^{12}-2 \int_{-2}^{12}\left[f^{\prime}(x)\right] d x \\
=[36-(-6)]-2\left[\frac{1}{2}(4)(3)-\frac{1}{2}(8)(4)-\frac{1}{2}(3)(2)\right] \\
=[42]-2[6-26-3]=[42]-2[-23]=[42]+[46]=88
\end{gathered}
$$

What they wrote is wrong

t	0	0.2	0.4	0.5	0.6	0.8	1.0
$W(t)$	4	5.7	9.3	12.2	16.3	29.3	53.2

Consider the differential equation $\frac{d W}{d t}=9-W^{2}$. Let $y=W(t)$ be the particular solution to the differential equation with the initial condition $W(0)=4$. The function W is twice differentiable with selected values of W given in the table above.
AB4: Find $\frac{d^{2} W}{d t^{2}}$ in terms of W.

$$
\frac{d^{2} W}{d t^{2}}=\frac{d}{d t}\left(9-W^{2}\right)=-2 W \frac{d W}{d t}=-2 W\left(9-W^{2}\right)
$$

AB5: Use a midpoint Riemann sum with the three subintervals indicated by the table above to approximate

$$
\begin{aligned}
& \int_{0}^{1} W(t) d t \\
& \begin{array}{c}
\int_{0}^{1} W(t) d t \approx[(0.4) W(0.2)+(0.2) W(0.5)+(0.4) W(0.8)]=[(0.4)(5.7)+(0.2)(12.2)+(0.4)(29.3)] \\
\quad=[(2.28)+(2.44)+(11.72)]=16.44
\end{array}
\end{aligned}
$$

