

Graph of f

1. The continuous function f is defined on the closed interval $-4 \leq x \leq 12$ and consists only of line segments as shown in the figure above. The function g is given by $g(x)=\int_{-2}^{x} f(t) d t$.
a. Evaluate $\int_{-1}^{2} f^{\prime}(6-4 x) d x$
b. Find $\lim _{x \rightarrow 0} \frac{\int_{-4}^{2 x} f(t) d t}{3 x^{2}+x}$
c. On the interval $-4 \leq x \leq 12$, identify the x-value(s) at which g has a relative minimum. Justify your answer.
d. Let $Q(x)=x^{2}-g(x)$. Write the second degree Taylor Polynomial for Q about $\mathrm{x}=-2$.

x	-2	-1	0	2	3
$g(x)$	-3	-2	1	4	5
$g^{\prime}(x)$	6	2	-3	-2	3

Graph of f
2. The function f is defined and continuous on the closed interval $-4 \leq x \leq 4$ and is piecewiselinear as shown above. The function g is twice-differentiable for all values of x. Selected values of g and g^{\prime}, the derivative of g, are given in the table above. The function $h(x)=\frac{b}{x^{\sqrt{2} p-1}}$ is defined for $x>0$ where b and p are both constants.
a. $\int_{-2}^{2} \frac{1}{2} x g^{\prime \prime}(x) d x$
b. $\int_{-1}^{1} f^{\prime}(1-2 x) d x$
c. $\quad k(x)=\int_{1}^{\cos (x)} 2 g(x) d x$. What is the value of $k^{\prime}\left(\frac{\pi}{2}\right)$?
d. Let $a_{n}=h(n)$. For what values of p does $\sum_{n=1}^{\infty} a_{n}$ converge?

5 for 5: Calculus AB Day 1

The function f is continuous on the interval $[-2,7]$ and consists of three line segments and a semi circle as shown in the figure above. The function g is defined by $g(x)=\int_{-2}^{x^{2}} f(t) d t$.

AB1: Find $g(2), g^{\prime}(2)$, and $g^{\prime \prime}(2)$.

AB2: Let $h(x)=f(5 x-9)$. Find $h^{\prime}(3)$.

AB3: Evaluate $\int_{-1}^{0}\left[f^{\prime}(3-2 x)-4\right] d x$.

t seconds	0	1	4	6
$P(t)$ people per second	8	3	5	10

For $0 \leq t \leq 6$ seconds, people enter a school at the rate $P(t)$, measured in people per second.

AB4: Approximate $P^{\prime}(5)$. Using correct units, interpret the meaning of $P^{\prime}(5)$ in the context of the problem.

AB5: Use a left Riemann sum with the three subintervals indicated by the table above to approximate $\int_{0}^{6} P(t) d t$.

5 for 5: Calculus AB Day 2

x	1	4	6	9
$g(x)$	3	1	0	-1
$g^{\prime}(x)$	2	0	1	3

A portion of the graph of f^{\prime}, the derivative of the twice differentiable function f, is shown in the figure above. The areas of the regions bounded by the graph of f^{\prime} and the x axis are labeled. It is known that $f(1)=-2$.

The function g is twice differentiable. Selected values of g and g^{\prime} are shown in the table above.

AB1: Find all values of x in the open interval $-3<x<8$ for which the graph of f has horizontal tangent line. For each value of x, determine whether f has a relateive minimum, relative maximum, or neither a minimum nor a maximum at the x value. Justify your answers.

AB2: Find the minimum value of f on the closed interval $[-3,8]$. Justify your answer..

AB3: Let $h(x)=\frac{e^{g(x)}}{3 x}$. Find $h^{\prime}(6)$.

AB4: Is there a time $c, 1<c<9$, such that $g^{\prime}(c)=-\frac{1}{2}$? Give a reason for your answer.

AB5: Evaluate $\int_{1}^{4}[g(x)]^{2} g^{\prime}(x) d x$.

x	0	1	3	5
$g(x)$	2	0	5	-1
$g^{\prime}(x)$	7	4	-2	3

The function f is defined and continuous for all $x \geq-3$ except at $x=3$. A portion of the graph of f, consisting of three linear pieces is shown in the figure above.

The function g is differentiable for all values of x. Selected values of g and g^{\prime}, the derivative of g, are given in the table above.

AB1: Write an equation of the line tangent to g at $x=3$. Use this tangent line to approximate $g(2)$.

AB2: Evaluate $\lim _{x \rightarrow-1} \frac{\int_{-3}^{x^{2}} f(t) d t}{x^{3}+1}$

AB3: Let $k(x)=g(f(x))$. Find $k^{\prime}(2)$.

AB4: Let $p(x)=\left\{\begin{array}{ll}f(x) g^{\prime}(x) & x<3 \\ 4 f^{\prime}(x-3) & x \geq 3\end{array}\right.$. Is $p(x)$ continuous at $x=3$? Why or why not?

AB5: If $\int_{-3}^{10} f(x) d x=5$, find the value of $\int_{7}^{10} f(x) d x$. Show the work that leads to your answer.

5 for 5: Calculus AB Day 4

The function f is differentiable on the interval $[-2,12]$ and consists of three line segments as shown in the figure above. It is known that $f(4)=14$
AB1: On what open intervals is the graph of f both decreasing and concave down? Give a reason for your answer.

AB2: Let $g(x)=f(x) f^{\prime}(x)$. Find $g^{\prime}(4)$.

AB3: Evaluate $\int_{-2}^{12}\left[3-2 f^{\prime}(x)\right] d x$.

t	0	0.2	0.4	0.5	0.6	0.8	1.0
$W(t)$	4	5.7	9.3	12.2	16.3	29.3	53.2

Consider the differential equation $\frac{d W}{d t}=9-W^{2}$. Let $y=W(t)$ be the particular solution to the differential equation with the initial condition $W(0)=4$. The function W is twice differentiable with selected values of W given in the table above.
AB4: Find $\frac{d^{2} W}{d t^{2}}$ in terms of W.

AB5: Use a midpoint Riemann sum with the three subintervals indicated by the table above to approximate $\int_{0}^{1} W(t) d t$.

