AP Review 7: Response to FRQ Practice Exam

Announcements:

- Please make sure you fill out the survey so I know what your testing plans are.
- More testing details next week.
- Time to review FRQ \#6 from the Practice Exam will come this week. Please attend if you are a BC test taker.
- I love you all!

1. First, we will take a look at the FRQ labeled \#3 on the Practice Exam you took! Key Takeaways
2. We will now split into groups to practice through two other FRQs. You will use each other and your notes to work together and practice skills we have reviewed up to this point. I have the answer video linked with each problem you can use if I am not there. Do not move on until everyone in your group is feeling comfortable. When I cycle into your room, ask me any questions you have!

AB/BC 2019 \#3 No Calc VIDEO ANSWER Scoring Guides (go to page 4)

$$
\text { Graph of } f
$$

3. The continuous function f is defined on the closed interval $-6 \leq x \leq 5$. The figure above shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point $(5,3)$. It is known that the point $(3,3-\sqrt{5})$ is on the graph of f.
(a) If $\int_{-6}^{5} f(x) d x=7$, find the value of $\int_{-6}^{-2} f(x) d x$. Show the work that leads to your answer.
(b) Evaluate $\int_{3}^{5}\left(2 f^{\prime}(x)+4\right) d x$.
(c) The function g is given by $g(x)=\int_{-2}^{x} f(t) d t$. Find the absolute maximum value of g on the interval $-2 \leq x \leq 5$. Justify your answer.
(d) Find $\lim _{x \rightarrow 1} \frac{10^{x}-3 f^{\prime}(x)}{f(x)-\arctan x}$.

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the

Graph of f^{\prime} closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

Homework
Complete the FRQs without notes, correct yourself, submit the score report, and email me your work as usual. THEN spend about 15 minutes updating the AP Calculus BC Review Document with links and practice problems.
BC 2016 \#3 No Calc [FOR BOTH AB and BC TEST TAKERS]

No calculator is allowed for these problems.

3. The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Does g have a relative minimum, a relative maximum, or neither at $x=10$? Justify your answer.
(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer.
(c) Find the absolute minimum value and the absolute maximum value of g on the interval $-4 \leq x \leq 12$. Justify your answers.
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.

Score: \qquad /9

AB 2015 \#5 No Calc [FOR AB and BC TEST TAKERS]

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the interval $[-3,4]$. The graph of f^{\prime} has horizontal tangents at $x=-1, x=1$, and $x=3$. The areas of the regions bounded by the x-axis and the graph of f^{\prime} on the intervals $[-2,1]$ and $[1,4]$ are 9 and 12, respectively.
(a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.
(b) On what open intervals contained in $-3<x<4$ is the graph of f both concave down and decreasing? Give a
 reason for your answer.
(c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.
(d) Given that $f(1)=3$, write an expression for $f(x)$ that involves an integral. Find $f(4)$ and $f(-2)$.

Score: \qquad /9

BC 2010 \#5 No Calc [FOR BC TEST TAKERS ONLY]

Consider the differential equation $\frac{d y}{d x}=1-y$. Let $y=f(x)$ be the particular solution to this differential equation with the initial condition $f(1)=0$. For this particular solution, $f(x)<1$ for all values of x.
(a) Use Euler's method, starting at $x=1$ with two steps of equal size, to approximate $f(0)$. Show the work that leads to your answer.
(b) Find $\lim _{x \rightarrow 1} \frac{f(x)}{x^{3}-1}$. Show the work that leads to your answer.
(c) Find the particular solution $y=f(x)$ to the differential equation $\frac{d y}{d x}=1-y$ with the initial condition $f(1)=0$.

Score: \qquad /9

