AP ${ }^{\circledR}$ CALCULUS BC 2013 SCORING GUIDELINES

Question 4

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the

Graph of f^{\prime} closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.
(a) $x=6$ is the only critical point at which f^{\prime} changes sign from negative to positive. Therefore, f has a local minimum at $x=6$.
(b) From part (a), the absolute minimum occurs either at $x=6$ or at an endpoint.

$$
\begin{aligned}
f(0) & =f(8)+\int_{8}^{0} f^{\prime}(x) d x \\
& =f(8)-\int_{0}^{8} f^{\prime}(x) d x=4-12=-8 \\
f(6) & =f(8)+\int_{8}^{6} f^{\prime}(x) d x \\
& =f(8)-\int_{6}^{8} f^{\prime}(x) d x=4-7=-3
\end{aligned}
$$

$f(8)=4$
The absolute minimum value of f on the closed interval $[0,8]$ is -8 .
(c) The graph of f is concave down and increasing on $0<x<1$ and $3<x<4$, because f^{\prime} is decreasing and positive on these intervals.
(d) $g^{\prime}(x)=3[f(x)]^{2} \cdot f^{\prime}(x)$
$g^{\prime}(3)=3[f(3)]^{2} \cdot f^{\prime}(3)=3\left(-\frac{5}{2}\right)^{2} \cdot 4=75$

1 : answer with justification
$3:\left\{\begin{array}{l}1: \text { considers } x=0 \text { and } x=6 \\ 1: \text { answer } \\ 1: \text { justification }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { explanation }\end{array}\right.$
$3:\left\{\begin{array}{l}2: g^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\oplus}$ CALCULUS BC 2011 SCORING GUIDELINES

Question 5

At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
(a) Use the line tangent to the graph of W at $t=0$ to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
(b) Find $\frac{d^{2} W}{d t^{2}}$ in terms of W. Use $\frac{d^{2} W}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t=\frac{1}{4}$.
(c) Find the particular solution $W=W(t)$ to the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ with initial condition $W(0)=1400$.
(a) $\left.\frac{d W}{d t}\right|_{t=0}=\frac{1}{25}(W(0)-300)=\frac{1}{25}(1400-300)=44$

The tangent line is $y=1400+44 t$.
$W\left(\frac{1}{4}\right) \approx 1400+44\left(\frac{1}{4}\right)=1411$ tons
(b) $\frac{d^{2} W}{d t^{2}}=\frac{1}{25} \frac{d W}{d t}=\frac{1}{625}(W-300)$ and $W \geq 1400$

Therefore $\frac{d^{2} W}{d t^{2}}>0$ on the interval $0 \leq t \leq \frac{1}{4}$.
The answer in part (a) is an underestimate.
(c) $\frac{d W}{d t}=\frac{1}{25}(W-300)$
$\int \frac{1}{W-300} d W=\int \frac{1}{25} d t$
$\ln |W-300|=\frac{1}{25} t+C$
$\ln (1400-300)=\frac{1}{25}(0)+C \Rightarrow \ln (1100)=C$
$W-300=1100 e^{\frac{1}{25} t}$
$W(t)=300+1100 e^{\frac{1}{25} t}, \quad 0 \leq t \leq 20$
$2:\left\{\begin{array}{l}1: \frac{d W}{d t} \text { at } t=0 \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{d^{2} W}{d t^{2}} \\ 1: \text { answer with reason }\end{array}\right.$
$5:\left\{\begin{array}{l}1: \text { separation of variables } \\ 1: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { solves for } W\end{array}\right.$
Note: $\max 2 / 5[1-1-0-0-0]$ if no constant of integration
Note: $0 / 5$ if no separation of variables

