Part I: Vocabulary List

Please define each of the following terms from the information on the stattrek website. When asked to provide an example of the word, provide a unique example of the word NOT given on the website.

1. Categorical Variables Also known as qualitative variables. These take on names or labels.
Example: Ice cream flavor, brand of shoes, color pendil
2. Quantitative Variables Numencal variables. These variables represent a measurable quantity.
Example: Number of students who play sports, how man y pets someone
owns
3. Univariate Data A study that only focuses on ane variable
4. Bivariate Data A study that focuses on the relationship betwe en two variables.
5. Median Arrange observations fom smallest to largest and select
the middle valve.
6. Mean Adding all observation values and divide by number of observations.
7. Population Includes each element from the set of observations that can be made.
(Parameter)
Example: All people living in the U.S.
8. Sample Include one or more observations from the population
(statistics)
Example: some people living in the U.S.
9. Center Located at the median of the distribution.

Center turns out to be a kind of slippery thing in statistics. The median is often a useful measure of the "center" of data. Both there are other "measures of central tendency" such as median that might be useful in certain contexts. You can think of center as "the most typical point of data."
10. Spread Variability of the data
11. Symmetry Distribution can be divided in half so that each half is a mirror image of the other half.
12. Unimodal and Bimodal Unimodal; When there is one clear peak Bimodal: Tho clear peaks
single peak at the center $=$ Bell-s haped
13. Skewness When there's move observations on one side of the graph than another.

Sketch Skewed left:

Fewer observations on the left

Sketch Skewed right:

Fewer observations on
the right
14. Uniform Observatons are equally spread across the range
of the distribution. of the distribution.
15. Gaps Areas of a distribution with no data / observations
16. Outliers Extreme values that differ greatly from other observations
17. Dot plots A type of graphic display used to compare frequency
counts within categon es or groups.

18. Difference between a bar chart and histogram

Bor charts have spaces between columns, while histograms usually do not.
Bar charts = qualitative column variable Histo grams = quantitative column
19. Stem plots

A type of chart that shows how individual values are distiputed within a set of data. (stems ε_{1} leaves)
20. Boxplots Type of graph used to display patterns of quantitative data.
21. Quartiles Used to divide a rank-ordered dato set into four equal parts. Q1, Q2, Q3
22. Range The difference between the largest and smallest values
in a set of values.
23. Interquartile Range The measure of variability, based on dividing a data set into quartiles.

Q3-Q1 = IQR
24. Parallel boxplots

When data from two groups is displayed on the same chart using the same measurement scale. Maybe it goes without saying, but the
Data are given as a simple number count
25. Difference between a frequency table and relative frequency table

Frequency tables shows the popularity or mode of a certain type of daia Relative frequency tables show the number of times a specificevent occurs compared to the total number of events.
26. Parameter An element from a population

Often given as percentages or proportions
The key here is the POPULATION. Parameters are measurable characteristics of the WHOLE population
27. Statistic Observations taken from a sample

The key here is the SAMPLE. Statistics are measurable characteristics of the SAMPLE.
28. Marginal Distribution The probability distribution of the sums of rows or columns expressed as percentages of the grand total.
In frequency tables.
29. Conditional Distribution Probabllity distribution for a sub-population In relative frequency tables.
30. Segmented Bar Chart Stacked bar chart with two axes. One shows a discrete value and the other shows values $w /$ different bars in different categories.
31. What are the W's of data (might need to do your own digging for this!) Who, What, When, Where, Why, and How

Part 2: Practice Problems

Categorical or Quantitative
Determine if the variables listed below are quantitative or categorical.

1. Time it takes to get to school Q
2. Number of people under 18 living in a household Q
3. Hair color C
4. Temperature of a cup of coffee Q
5. Teacher salaries Q
6. Gender C
7. Smoking C
8. Height
9. Amount of oil spilled Q
10. Age of Oscar winners
11. Type of Depression medication C
12. Jellybean flavors C
13. Country of origin C
14. type of meat C
15. number of shoes owned Q

Statistic - What is that?
A statistic is a number calculated from data. Quantitative data has many different statistics that can be calculated. Determine the given statistics from the data below on the number of homeruns Mark McGuire has hit in each season from 1982-2001.

70	52	22	49	3	32	58	39
39	65	-42	29	9	32	9	33

Mean	36.4375
Minimum	3
Maximum	70
Median	36
Q1	25.5
Q3	50.5
Range	67
IQR	25

-16. Bar charts-qualitative column variable Histogram-quanitative column variable

Sketch
Unimodal
Bimodal
skewed Left skewed Right
$\frac{7}{123451678}$

Define \& Formulas $\quad \mu=$ pop mean $X_{i}=$ Thelement $N=$ number of elements

Standard Deviation

4 Square root of the variance
A measure of variation in a data set.

Variance

\leftrightarrows Average squared deviation from $\} \sigma^{2}=\sum\left(x_{i}-\mu\right)^{2} / N$ the population mean

Standard Score (z-score)
\checkmark Indicates how many standard $\left.\begin{array}{l}\text { deviations an element is from } \\ \text { the mean. }\end{array}\right\} z=(x-\mu) / \sigma$
17.

Standard Deviation is a frustrating calculation to do by hand. We will usually use technology to aid us.
18. Mean: 26

Standard Deviation: 3.83
5- Number summary: $\operatorname{Min}: 19 \quad Q 1=23$ Median $=26 \quad Q 3=29 \quad$ $\operatorname{MaX}=32$
$I Q R: 6=29-23$

19.

Diego's Video Game Usage

Fortnite: 38\%
Publ: 09\%
The show: 8%
Madden 2017: 20%
(od of War: 19\%
COD: 6\%.

Food Items Sold
Cheeseburger: 40% Milkshake: 10% Chicken Fingers: 13% Fries: 33%
Egg, Salad: 5%

Shopping Spree!

A marketing consultant observed 50 consecutive shoppers at a supermarket. One variable of interest was how much each shopper spent in the store. Here are the data (round to the nearest dollar), arranged in increasing order:

3	9	9	11	13	14	15	16	17	17
18	18	19	20	20	20	21	22	23	24
25	25	26	26	28	28	28	28	32	35
36	39	39	41	43	44	45	45	47	49
50	53	55	59	61	70	83	86	86	93

a. Make a stemplot using tens of dollars as the stem and dollars as the leaves. Make sure you include appropriate labels, title and key.
$\frac{\text { Shopping Spree Money (\$) Spent in Store }}{\text { Stem Leaves }}$

SSHA Scores
Here are the scores on the Survey of Study Habits and Attitudes (SSHA) for 18 first-year college women:
$154109137115152140 / 154178101103 / 126126137165165129200148$
and for 20 first-year college men:
1081401149118011512692169146109132758811315170115187104
a. Put the data values in order for each gender. Compute numeral summaries for each gender.

Women		Men		
Mean	141.055		Mean	121.25
Minimum	101		Minimum	70
Q1	126		Q1	98
Median	138.5		Median	114.5
Q3	154		Q3	143
Maximum	200		Maximum	187
Range	99		Range	117
IQR	28		QR	45

b. Using the minimum, Q1, Median, Q3, and Maximum from each gender, make parallel boxplots to compare the distributions.

Females

Males

 138.5

New Grading Policy

A new grading policy has been proposed by the dean of the College of Education for all education majors. All faculty and students in the college were asked to give their opinions about the new policy. The results are given below.

	Favor	Neutral	Opposed	Row Total
Students	353	75	191	619
Faculty	11	5	18	34
Column Total	364	80	209	653

a. State the variables and if they are categorical or quantitative.

Votes - quantatative
People voting - Cate gorical

I know it can be confusing, but the MAIN variable of interest here is categorical: people's opinions.
b. What percent of responses were

Opinions - Categorical
What percent of students favere from students favoring the policy change? 353/653=54.05\% What percent of students favored the policy change? 353/619=57.02\%
What percent favoring the policy change were students? 96.98%
c. What is the marginal distribution of the grading policy change?

Favor $=56 \% \quad$ Neutral $=12 \%$ opposed $=32 \%$
d. What is the distribution of the grading policy among just students?

Favor $=57 \%$
Neutral $=12 \%$
Opposed= $=31 \%$
e. What is the distribution of the grading policy among just faculty?
Favor 32%
Neutral $=15 \%$
Opposed $=53 \%$
f. Create a segmented bar graph of students and faculty and their view on the proposed grading policy change.

Algebra Section:

The prerequisite for AP Statistics is Algebra II. You will find very much equation solving in this course, but some quick review of Algebra I and Algebra II content will be helpful.

Here is a formula that is used often in AP $\quad z=\frac{x-\bar{x}}{s}$ Statistics:
 Statistics:

1. If $z=2.5, x=102$, and $\bar{x}=100$. What is s ? Show yourwork.

$$
2.5=\frac{102-100}{s} \quad 2.5=\frac{2}{s} \quad s=0.8
$$

2. If $\mathrm{z}=-3.35, \mathrm{x}=60$, and $\mathrm{s}=4$, what is \bar{x} ? Show your work.

$$
-3.35=\frac{60-\bar{x}}{4} \quad \begin{aligned}
& -13.4=60-x \\
& -60 \\
& \hline 60-1
\end{aligned}
$$

3. Solve $0.05=1.96 \sqrt{\frac{0.5^{2}}{n}}$ for n . $\frac{-73.4}{-1}$

$$
1.96 \frac{1.96}{1.96}
$$

$$
0.0255^{2}={\frac{{\sqrt{0.5^{2}}}^{2}}{n}}^{2}
$$

$$
6.51 \times 10^{-4}=\frac{0.5^{2}}{n} \quad n=384.16
$$

4. If $-1.64=\frac{60-\mu}{\sigma}$ and $1.96=\frac{95-\mu}{\sigma}$, solve for μ and σ.

$$
h o-l
$$

