INTERVENTION STUDENT PACKET

Х	-1	0	1	2	3
f(x)	2	4	-3	2	0
f'(x)	3	-3	2	1	2
f''(x)	5	2	0	3	1
$f^{3}(x)$	-4	-1	7	9	1

Extra BC Practice

a. Find $\int_0^3 2x f^3(x) dx$

b. Write the third degree Taylor polynomial for f about x=2 and use it to approximate f(2.1).

c. If $g(x) = \int_0^{\sin(x)} f(t) dt$, find the value of g'(0). Then find the value of g''(0).

d. If h(x)=xf(x), write the first four terms of the Taylor polynomial for h(x) about x=0.

MARKWALTER'S AP CALCULUS AB

e. Use Euler's method starting at x=2 with two steps of equal size to approximate f(4). Show the work that leads to your answer. For f, it is known the derivative is a function ONLY of x.

f. If $j(x) = f'(x) + \frac{2}{x^2 + 5x + 6}$, evaluate $\int_0^2 j(x) dx$.