I.2 Definition of Derivative and Calculus Theora

1. Suppose we only know a few values of the function f(x).

f(x)	5	7	10	4	3	-2	4	6	7
X	0	2	3	6	8	9	11	12	14

- a. What is the average rate of change of f(x) over the interval [2,11]?
- b. What is the slope of the secant line through the points f(3) and f(8)?
- c. Approximate the instantaneous rate of change of f(x) at x=7.

Average Rate of Change:	Instantaneous Rate of Change:

Definition of a Derivative

$$\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{3} + h\right) - \sin\left(\frac{\pi}{3}\right)}{h}$$
 is

- (A) 0 (B) $\frac{1}{2}$ (C) 1 (D) $\frac{\sqrt{3}}{2}$ (E) nonexistent

3. Find:
$$\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{2} + h\right) - \sin\left(\frac{\pi}{2}\right)}{h}$$

4. Find:
$$\lim_{h\to 0} \frac{\cos\left(\frac{\pi}{2} + h\right)}{h}$$

$$\lim_{x \to 2} \frac{\ln(x+3) - \ln(5)}{x-2} \text{ is}$$

- (A) 0 (B) $\frac{1}{5}$ (C) $\frac{1}{2}$ (D) 1 (E) nonexistent

5. Find
$$\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{6}+h\right)-\frac{1}{2}}{h}$$

6. Find
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \sin \frac{\pi}{4}}{x - \frac{\pi}{4}}$$

What is the average rate of change of $y = \cos(2x)$ on the interval $\left[0, \frac{\pi}{2}\right]$?

- (A) $-\frac{4}{\pi}$ (B) -1 (C) 0 (D) $\frac{\sqrt{2}}{2}$ (E) $\frac{4}{\pi}$

IVT, MVT, and EVT

Intermediate Value Theorem:	Mean Value Theorem:
Criteria:	Criteria:
XXII	***
What it proves:	What it proves:
What you need to show:	What you need to show:
What you need to show.	what you need to show.
Extreme Value Theorem:	
Criteria:	
Citoria.	
What it proves:	
XVI 4 14 1	
What you need to show:	

Let f be a function that is continuous on the closed interval [2, 4] with f(2) = 10 and f(4) = 20. Which of the following is guaranteed by the Intermediate Value Theorem?

- (A) f(x) = 13 has at least one solution in the open interval (2, 4).
- (B) f(3) = 15
- (C) f attains a maximum on the open interval (2, 4).
- (D) f'(x) = 5 has at least one solution in the open interval (2, 4).
- (E) f'(x) > 0 for all x in the open interval (2, 4).

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.

Let f be a twice-differentiable function such that f(2) = 5 and f(5) = 2. Let g be the function given by g(x) = f(f(x)).

- (a) Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1.
- (b) Show that g'(2) = g'(5). Use this result to explain why there must be a value k for 2 < k < 5 such that g''(k) = 0.