I. 2 Definition of Derivative and Calculus Theora

1. Suppose we only know a few values of the function $f(x)$.

$\mathrm{f}(\mathrm{x})$	5	7	10	4	3	-2	4	6	7
x	0	2	3	6	8	9	11	12	14

a. What is the average rate of change of $f(x)$ over the interval $[2,11]$?
b. What is the slope of the secant line through the points $f(3)$ and $f(8)$?
c. Approximate the instantaneous rate of change of $f(x)$ at $x=7$.

Average Rate of Change:	Instantaneous Rate of Change:

Definition of a Derivative

$\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{3}+h\right)-\sin \left(\frac{\pi}{3}\right)}{h}$ is
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) $\frac{\sqrt{3}}{2}$
(E) nonexistent
3. Find: $\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{2}+h\right)-\sin \left(\frac{\pi}{2}\right)}{h}$
4. Find: $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)}{h}$
$\lim _{x \rightarrow 2} \frac{\ln (x+3)-\ln (5)}{x-2}$ is
(A) 0
(B) $\frac{1}{5}$
(C) $\frac{1}{2}$
(D) 1
(E) nonexistent
5. Find $\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}+h\right)-\frac{1}{2}}{h}$
6. Find $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x-\sin \frac{\pi}{4}}{x-\frac{\pi}{4}}$

What is the average rate of change of $y=\cos (2 x)$ on the interval $\left[0, \frac{\pi}{2}\right]$?
(A) $-\frac{4}{\pi}$
(B) -1
(C) 0
(D) $\frac{\sqrt{2}}{2}$
(E) $\frac{4}{\pi}$

IVT, MVT, and EVT

Intermediate Value Theorem: Criteria:	Mean Value Theorem: Criteria:
What it proves:	What it proves:
What you need to show:	What you need to show:
Extreme Value Theorem:	
Criteria:	
What it proves:	
What you need to show:	

Let f be a function that is continuous on the closed interval $[2,4]$ with $f(2)=10$ and $f(4)=20$. Which of the following is guaranteed by the Intermediate Value Theorem?
(A) $f(x)=13$ has at least one solution in the open interval $(2,4)$.
(B) $f(3)=15$
(C) f attains a maximum on the open interval $(2,4)$.
(D) $f^{\prime}(x)=5$ has at least one solution in the open interval $(2,4)$.
(E) $f^{\prime}(x)>0$ for all x in the open interval $(2,4)$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.
(a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.
(b) Explain why there must be a value c for $1<c<3$ such that $h^{\prime}(c)=-5$.

Let f be a twice-differentiable function such that $f(2)=5$ and $f(5)=2$. Let g be the function given by $g(x)=f(f(x))$.
(a) Explain why there must be a value c for $2<c<5$ such that $f^{\prime}(c)=-1$.
(b) Show that $g^{\prime}(2)=g^{\prime}(5)$. Use this result to explain why there must be a value k for $2<k<5$ such that $g^{\prime \prime}(k)=0$.

