I.3 Derivative Practice

Warm-Up

Find the slope of the line tangent to the curve $y = \ln(e^{x^2} + 2x)$ at its y-intercept.

- O (A) 0
- O (B) 2
- O (C) 3
- $O(D)\frac{1}{2}$
- $O(E)\frac{1}{3}$

16. If
$$y = 5x\sqrt{x^2 + 1}$$
, then $\frac{dy}{dx}$ at $x = 3$ is
(A) $\frac{5}{2\sqrt{10}}$ (B) $\frac{15}{\sqrt{10}}$ (C) $\frac{15}{2\sqrt{10}} + 5\sqrt{10}$ (D) $\frac{45}{\sqrt{10}} + 5\sqrt{10}$ (E) $\frac{45}{\sqrt{10}} + 15\sqrt{10}$

3. If $3x^2 + \tan(y) = 1$, what is dy/dx?

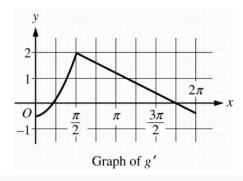
Key takeaways: Implicit Differentiation

Derivative Rules:

AB 2018 #5

- 5. Let f be the function defined by $f(x) = e^x \cos x$.
 - (a) Find the average rate of change of *f* on the interval $0 \le x \le \pi$.
 - (b) What is the slope of the line tangent to the graph of f at $x = \frac{3\pi}{2}$?
 - (c) Find the absolute minimum value of f on the interval $0 \le x \le 2\pi$. Justify your answer.
 - (d) Let g be a differentiable function such that $g\left(\frac{\pi}{2}\right) = 0$. The graph of g', the derivative of g, is shown

below. Find the value of $\lim_{x \to \pi/2} \frac{f(x)}{g(x)}$ or state that it does not exist. Justify your answer.



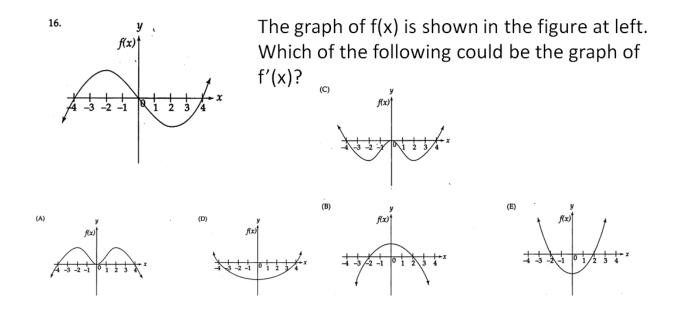
INTERVENTION STUDENT PACKET

The derivative f'(x) shows us the _____ of f(x) at every x-value.

Where the slope of f(x) is 0 (a _____), the graph of f'(x) touches the

А	happens when f''(x)	. That is where $f'(x)$

First Derivative (f'(x)	Second Derivative (f''(x))



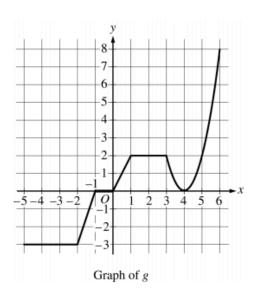
INTERVENTION STUDENT PACKET

26. The maximum velocity attained on the interval $0 \le t \le 5$ by the particle whose displacement is given by $s(t) = 2t^3 - 12t^2 + 16t + 2$ is

(A) 286	(B) 46	(C) 16	(D) 0	(E) –8
---------	--------	--------	-------	--------

Finding an Absolute Extrema

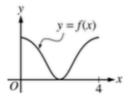
BC 2018 #3



- 3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \le x < 3$, and $g(x) = 2(x 4)^2$ for $3 \le x \le 6$.
 - (a) If f(1) = 3, what is the value of f(-5)?
 - (b) Evaluate $\int_{1}^{6} g(x) dx$.
 - (c) For -5 < x < 6, on what open intervals, if any, is the graph of f both increasing and concave up? Give a reason for your answer.
 - (d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.

No Calc

- 16. The function f is defined by $f(x) = 2x^3 4x^2 + 1$. The application of the Mean Value Theorem to f on the interval $1 \le x \le 3$ guarantees the existence of a value c, where 1 < c < 3, such that f'(c) =
 - (A) 0 (B) 9 (C) 10 (D) 14 (E) 16



14. The graph of y = f(x) on the closed interval [0, 4] is shown above. Which of the following could be the graph of y = f'(x)?

