I.5 Integrals and Integral Properties

$$1. \int_4^0 f(t)dt$$

$$2. \int_0^6 f(t)dt$$

$$3. \int_4^2 f(t)dt$$

$$4. \int_2^0 2f(t)dt$$

5.
$$\int_0^4 [f(t) + 2]dt$$

$$6. \int_8^8 f(t)dt$$

$$7. \int_{6}^{9} [3f(t) - 1]dt$$

$$8. \int_6^9 |f(t)| dt$$

9. Major Integral Rules:

INTERVENTION STUDENT PACKET

Suppose
$$\int_{-2}^{5} f(x) dx = 18$$
, $\int_{-2}^{5} g(x) dx = 5$, $\int_{-2}^{5} h(x) dx = -11$ and $\int_{-2}^{8} f(x) dx = 0$, find

10.
$$\int_{-2}^{5} (f(x) + g(x)) dx$$

11.
$$\int_{-2}^{5} (f(x) - h(x)) dx$$

12.
$$\int_{5}^{-2} 4g(x)dx$$

13.
$$\int_{-2}^{5} (2g(x) + 2) dx$$

14. If f(-1) = 2 and the graph of f', the derivative of f, is given below, what is the value of f(3)?

f'

15. The average value of function g on the interval $3 \le x \le 9$ is 7. What is the value of $\int_3^9 g(x)dx$?

Average value:

INTERVENTION STUDENT PACKET

BC 2019 #3 No Calc

Graph of f

- 3. The continuous function f is defined on the closed interval $-6 \le x \le 5$. The figure above shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point (5, 3). It is known that the point $(3, 3 \sqrt{5})$ is on the graph of f.
 - (a) If $\int_{-6}^{5} f(x) dx = 7$, find the value of $\int_{-6}^{-2} f(x) dx$. Show the work that leads to your answer.
 - (b) Evaluate $\int_{3}^{5} (2f'(x) + 4) dx$.

BC 2018 #3

Graph of g

- 3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \le x < 3$, and $g(x) = 2(x-4)^2$ for $3 \le x \le 6$.
 - (a) If f(1) = 3, what is the value of f(-5)?
 - (b) Evaluate $\int_1^6 g(x) dx$.