I.9 Taylor Series and Approximations

Why do we even care about Taylor Series?

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

So can we approximate other functions with series?

Let's make a power series (a Taylor Series) for sin(x) centered at x=0

INTERVENTION STUDENT PACKET

Practice 1: Find a second degree Maclaurin polynomial for $f(x) = e^{2x}$.

Practice 2: Find a third degree Taylor polynomial for g(x) = ln(x) centered at x = 1.

Practice 3: A function *h* has derivatives of all orders at x = 0. It is known that h(0) = 2, h'(0) = -1, and $h^{(n)}(0) = \frac{n^2}{n!}$ for $n \ge 2$. Find a third degree Maclaurin Polynomial for h(x).

x	1	2
$f(\mathbf{x})$	-2	0
f'(x)	3	-1
f''(x)	5	-6

Example 5: The function h is defined by $h(x) = 4 + \int_{2}^{2x} f(t) dt$ where f is a twice differentiable function.

Selected values of f and its derivatives are given in the table above. Find the 2^{nd} degree Taylor polynomial for h(x) centered at x = 1.

Practice 3: The function g is continuous and has derivatives for all orders at x = -1. It is known that g(-1) = 7 and for positive values of n, the nth derivative of g at x = -1 is defined as the piecewise function given below:

$$g^{(n)}(-1) = \begin{cases} n^2 + 1, & n \text{ is odd} \\ 0, & n \text{ is even} \end{cases}$$

a.) Find $P_5(x)$, the fifth degree Taylor polynomial of g(x) centered at x = -1.

b.) Determine if $P_5(x)$ is increasing or decreasing at x = -1. Explain your reasoning.

Practice 4: The fourth degree Taylor polynomial for f(x) centered about x = 2 is given by $T_4(x) = 2 - 3(x-2) + \frac{3(x-2)^2}{4} - \frac{4(x-2)^3}{9} + \frac{7(x-2)^4}{26}$. Find the value of f'''(2).

INTERVENTION STUDENT PACKET

- A function f has derivatives of all orders at all real x values.
- **a.)** Let $P_2(x)$ represent the 2nd degree Maclaurin polynomial for f. It is known that f(0) = 1 and f'(0) = 0. If $P_2(1) = \frac{1}{2}$, find f''(0).

b.) Find $P'_{2}(0)$ and $P''_{2}(0)$. Does $P_{2}(x)$ have a relative minimum, relative maximum, or neither at x = 0? Give a reason for your answer.

c.) Use $P_2(x)$ to approximate $f\left(\frac{1}{2}\right)$.

when you finally realize Napoleon Dynamite is actually Taylor Swift in drag

