Honors Pre-Calculus

Logs, Exponents, and Trig Review

If	It means	Or
The particle is to the right of the origin.	Position is positive	position graph is above the traxis.
The particle is to the left of the origin.	Position is negative	Position graph is below the t-axis.
The particle is at the origin.	Position is O.	Position graph is at the t-axis.
The particle is moving to the left.	Velocity is negative.	Velocity graph is below the t-axis.
The particle is moving to the right.	Velocity is positive.	Velocity graph is above the t-axis.
The particle is at rest.	Velocity is O.	Velocity graph is at the t-axis.
The acceleration of the particle is positive.	Velocity is increasing.	Velocity graphis "going up"
The acceleration of the particle is positive.	Velocity is decreasing.	Velocity graph is going down!

Logs, Exp, Trig Review

engage^{ny}

Honors Pre-Calculus

1. A population p can be modeled by the function $P = Ce^{kt}$ where C and k are both constants. If the population triples every 5 years, what is are the two constants?

$$1 = (e^{k(0)})$$

$$1 =$$

2. The decay of a specific isotope can be modeled by the function $A = Ce^{-kt}$ where C and k are both constants. If the amount of the isotope halves every 15 years, find a specific model for A, the amount of the isotope.

e amount of the isotope.

$$A = (e^{-k(0)})$$

$$A$$

32.
$$\log_3 7 - \log_3 x = \log_3 (7/x)$$

34.
$$\log_4 5 + \log_4 x + \log_4 y = \log_4 (5xy)$$

36.
$$2 \log_2 x - 3 \log_2 y = \log_2 (x^2) - \log_2 (y^3)$$

$$\log_2 \left(\frac{x^2}{y^3}\right)$$

38.
$$\log_2 x - 2 \log_5 y = \log_2 (x) - \log (y^2)$$

$$\log_2 (x^2)$$

33.
$$2 \log_5 x + \log_5 3 = \log_5 (x^2) + \log_5 (3) = \log_5 (x^2)$$

35.
$$3 \log_{10} x - \log_{10} 4 = \log_{10} (x^3) - \log_{10} (4) = \log_{10} (\frac{x^3}{4})$$

37.
$$\log_3 4 + 2 \log_3 x - \log_3 5 = \log_3 (4) + \log_3 (x^2) - \log_3 (5)$$

= $\log_3 (4x^2/5)$

39.
$$3\log_a 2 + \log_a 6 - 2\log_a 4$$

 $\log_a(8) + \log_a(6) - \log_a(16)$
 $\log_a(48/16) = \log_a(3)$

EUREKA MATH

Logs, Exp, Trig Review

engage^{ny}

5.136

Evaluate the following Trig Expressions. Rationalize every denominator.

$$\sec (\pi/6) = \frac{2\sqrt{3}}{3}$$

$$\csc(\pi/4) = \sqrt{2}$$

$$\cot(\pi/3) = \frac{\sqrt{3}}{3}$$

$$sec(\pi/3) = 2$$

$$\csc(\pi/6) = 2$$

$$\cot(\pi/4) = \int$$

$$sec^{2}(0) = |$$

$$csc^2(\pi/2) =$$

$$\cot^2(0) = \text{undef}$$

1. A. If $y = \sin(\frac{\pi}{4}x)$, find the zeroes on the interval $[0, 2\pi]$. $0 = \sin(\frac{\pi}{4}x)$ $\frac{\pi}{4}x = 0 + 2\pi n$

$$0 = Sin(\frac{\pi}{4}x)$$

$$0 = \sin(\frac{\pi}{4}x)$$

$$\sin^{-1}(0) = \frac{\pi}{4}x$$

$$x = \frac{4}{\pi}(0 + 2\pi n)$$

$$x = 4 + 8n$$

$$X = \frac{4}{\pi} \left(O + 2\pi n \right)$$

$$\frac{\pi}{4}x = \pi + 2\pi n$$

$$x = 4 + 8n$$

$$X=8$$
 $1=0$

Honors Pre-Calculus

$$0 = \cos\left(\frac{\pi}{2}x\right)$$

2. A. If
$$y = \cos(\frac{\pi}{5}x)$$
, find the zeroes on the interval $[0, 2\pi]$.

$$0 = \cos(\frac{\pi}{5}x)$$

$$\cos(\frac{\pi}{5}x)$$

$$x = \frac{\pi}{2} + 2\pi n$$

$$x = \frac{15}{2} + 10n$$

$$\frac{17}{5}X = \frac{3\pi}{2} + 2\pi\eta$$

B. Use your graphing calculator to confirm your answer.

- 3. There are two particles moving along the x-axis. One particle moves with a velocity given by the following equation: $v_1(t)=e^{\frac{3}{2}t}-4$. The other particle moves with a velocity given by the equation $v_2(t) = e^{\frac{1}{2}t} - 4.$
- a. When do each of the particles stop moving?

$$V_1 = e^{\frac{3}{2}t} - 4 = 0$$
 $e^{\frac{3}{2}t} = 4$

$$\frac{3}{2}t = \ln(4)$$

$$t = 2\ln(4)$$

$$v_2 = e^{\frac{1}{2}t} - 4 = 0$$
 $e^{\frac{1}{2}t} = 4$
 $\frac{1}{2}t = \ln(4)$
 $\left[t = 2\ln(4)\right]$