Unit 1: Limits & Continuity The piecewise function f(x) is made of two line segments and a semi-circle as shown for $-5 \le x \le 4$.

a)
$$\lim_{x \to 0} f(x - 1) = \lim_{x \to -1} f(x) = 0$$

$$\int_{a}^{b} f(1-x^2) = \lim_{u \to 2^{-}} f(u) = 3$$

c)
$$\lim_{x \to 0} \left(\frac{|x|}{x} \cdot f(x-1) \right) = 0$$

$$) = 1 \cdot 0 = 0;$$

$$\lim_{x \to 0^{-}} \left(\frac{|x|}{x} \cdot f(x - 1) \right) = -1 \cdot 0 = 0$$

Unit 2: Differentiation

Given
$$f(-3) = 5$$
, $f'(-3) = -2$, and $g(x) = \frac{1}{x}$. Let $h(x) = 4f(x) \cdot g(x)$. Find $\lim_{x \to -3} \frac{h(x) - h(-3)}{x + 3} = h'(-3)$.
 $h'(x) = 4f'(x)g(x) + 4f(x)g'(x)$

$$h'(-3) = 4f'(-3)g(-3) + 4f(-3)g'(-3) = 4(-2)\left(-\frac{1}{3}\right) + 4(5)\left(-\frac{1}{9}\right) = \frac{4}{9}$$

Unit 3: Chain Rule

1.

x	g(x)	g'(x)
1	2	0.2
2	4	0.4
3	5	0.6
4	8	0.8

The function g is differentiable. The table gives values of g and its derivative g' at selected values of x. The function h, whose graph is shown above, consists of three line segments.

(a) Let k be the function defined by k(x) = h(g(x)). Find k'(1).

$$k'(x) = h'(g(x))g'(x)$$

$$k'(1) = h'(g(1))g'(1) = h'(2)g'(1) = \frac{1}{2}(0.2) = \frac{1}{10}$$

(b) Let m be the function defined by m(g(x)) = x. In other words, m and g are inverses. Find m'(4).

$$m'(4) = \frac{1}{g'(m(4))} = \frac{1}{g'(2)} = \frac{1}{0.4} = \frac{5}{2}$$

2. Given the differential equation $\frac{dW}{dt} = \frac{1}{10}(W - 600)$, find $\frac{d^2W}{dt^2}$ in terms of W.

$$\frac{d^2W}{dt^2} = \frac{1}{10} \cdot \frac{dW}{dt} = \frac{1}{10} \left(\frac{1}{10} (W - 600) \right)$$

Unit 4: Contextual Applications of the Derivative

At the beginning of 2020, a landfill contained 1500 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{10}(W - 600)$ for the next 10 years. W is measured in tons, and t is measured in years from the start of 2020.

Use the line tangent to the graph of W at t=0 to approximate the amount of solid waste that the landfill contains at the end of April 2020 (time $t=\frac{1}{2}$).

$$W(0) = 1500; m = \frac{dW}{dt} \Big|_{W=1500} = \frac{1}{10} (1500 - 600) = 90$$
$$y = 1500 + 90(x - 0)$$
$$W\left(\frac{1}{3}\right) \approx 1500 + 90\left(\frac{1}{3}\right) = 1530$$

Unit 5: Analytical Applications of the Derivative

1. At the beginning of 2020, a landfill contained 1500 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{10}(W - 600)$ for the next 10 years. W is measured in tons, and t is measured in years from the start of 2020. Use the line tangent to the graph of W at t = 0 to approximate the amount of solid waste that the landfill contains at the end of April 2020 (time $t = \frac{1}{3}$). Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine if the tangent line approximation is an underestimate or an overestimate of the solid waste that the landfill contains at the time $t = \frac{1}{3}$.

$$\frac{d^2W}{dt^2} = \frac{1}{10} \left(\frac{1}{10} (W - 600) \right) = \frac{1}{100} W - 6$$
For all $t > 0$, $W > 1500$. So $\frac{d^2W}{dt^2} > 0$ for all $t > 0$.

Thus the tangent line approximation is an underestimate.

2. Verify that the function $g(x) = \sqrt{x+2}$ satisfies the hypotheses of the Mean Value Theorem (MVT) on the interval [-2,0]. Find all number(s) x = c, -2 < c < 0, that satisfy the conclusion of the MVT.

g(x) is continuous on [-2,0] and differentiable on (-2,0).

Therefore there is a value
$$c$$
 such that $g'(c)=\frac{g(-2)-g(0)}{-2-0}=\frac{0-\sqrt{2}}{-2}$
$$\frac{1}{2\sqrt{c+2}}=\frac{\sqrt{2}}{2}$$

$$\sqrt{c+2}=\frac{1}{\sqrt{2}}$$

$$c+2=\frac{1}{2}$$

$$c=-\frac{3}{2}$$

3. If f(1) = 3 and $f'(x) \ge 2$ for $1 \le x \le 4$, then what is the least value for f(4)? Minimum value of f'(x) is 2, so $m \ge 2$. So $f(4) \le f(1) + 2(4 - 1) = 3 + 2(3) = 9$

Unit 6: Integration and Accumulation of Change

Rewrite as a definite integral and evaluate: $\lim_{n\to\infty}\sum_{k=1}^n\Big(3\cos\Big(\frac{\pi k}{n}\Big)+5\Big)\Big(\frac{\pi}{n}\Big).$

$$\Delta x = \frac{\pi}{n} = \frac{b-a}{n}$$
; width of interval is π .

There is a direct operation on $\frac{\pi k}{n}$, so $x_k=0+\frac{\pi k}{n}$; the left bound is 0 and the right bound is π .

Function is $3\cos(x) + 5$.

$$\int_0^{\pi} (3\cos x + 5) \, dx = (3\sin x + 5x) \bigg|_0^{\pi} = 3\sin \pi + 5\pi - (3\sin 0 + 5(0)) = 5\pi$$

Unit 7: Differential Equations

LORDY we have done enough of these!! Watch episodes 1-8, 21, 22 and search shared folder for resources.