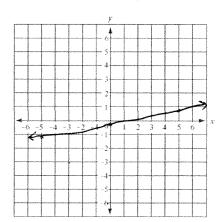

Lesson 11: Linear Inequalities in Two Variables


Do Now:

Graph the following functions:

$$y = 2x + 3$$

5y = 2x - 1 $y = \frac{2}{5}x - \frac{1}{5}$ -2x + 5y = -1

Draw a graph for each inequality.

1)
$$n \le -5$$

x <5

2) $n \le 5$

Write a compound inequality that the graph could represent.

a.
$$-2 \le x < 4$$

b.
$$-4 < x \le 2$$

a.
$$d > -3$$
 or $d \le 1$

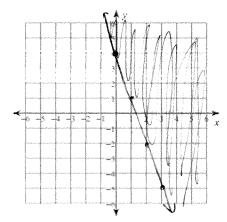
b.
$$d < -1 \text{ or } d \ge 3$$

$$x \ge -4 \text{ or } x < 2$$

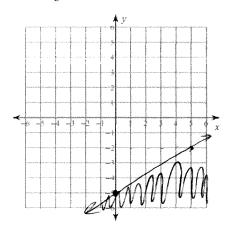
$$-4 < x < 2$$

$$\int d < -3 \text{ or } d \geq 1$$

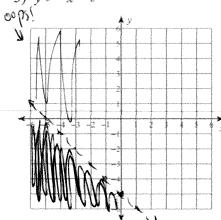
$$d = -1 < d < 3$$

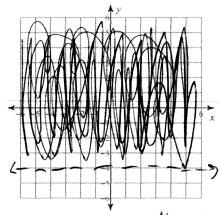

Inequalities are relations between expressions that are ________. They use the signs:

- 1, <
- 2. >
- 3. 🗸
- 4 ≥


They are very useful! For example, I can mathematically model a situation in which I want to buy no more than \$100 worth of groceries and gas combined in one week using inequalities.

Sketch the graph of each linear inequality.


1)
$$y \ge -3x + 4$$


2)
$$y \le \frac{3}{5}x - 5$$

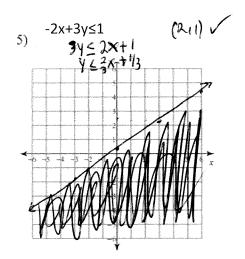
3)
$$y > -x - 5$$

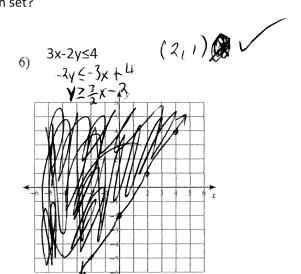
4)
$$y > -4$$

The solution to an inequality is a half-plane

The boundary is a line

line (linear)

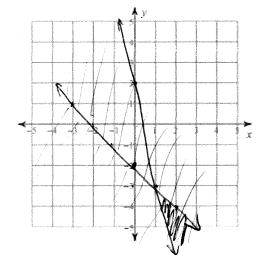

EUREKA MATH

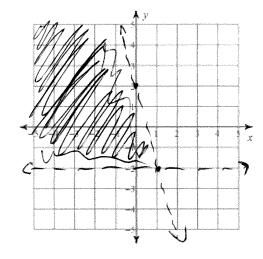

Lesson 11:

Inequalities

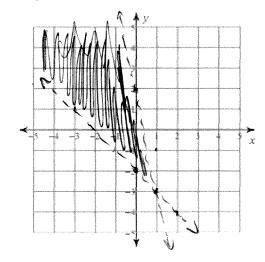
engage^{ny}

For which of these inequalities is (2, 1) in the solution set?

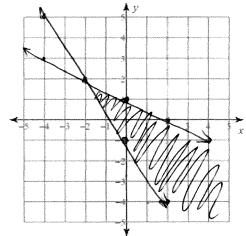



	Inequality in Standard Form	Inequality in Slope-Intercept Form	Quick Information
y 5 x	-2x+y≥0	Y22x	slope: 2 y-int: 0 Boundary: y=2x
y 5 2	xi/ > 2x+3y>3	Y7-2X+1	Slope: -2/3 Y-int: 1 Bounday: Y=-2/3X+1
y 5 x	3x+454	Y <u>C</u> -3x+4	Slope: -3 Y-int: 4 Boundary: Y=-3x+4
			EHUGUE

Sketch the solution to each system of inequalities.


1)
$$y \le -x - 2$$

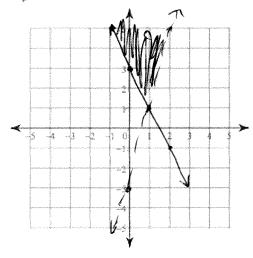
 $y \ge -5x + 2$


7)
$$4x + y < 2$$
 $y < -4x + 2$
 $y > -2$ $y > -2$

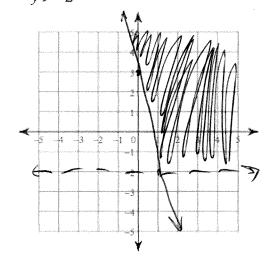
2)
$$y > -x - 2$$

 $y < -5x + 2$

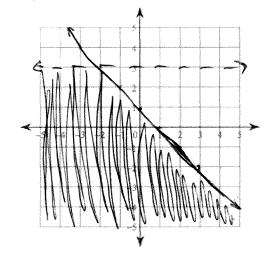
8)
$$3x + 2y \ge -2$$
 $y \ge -\frac{3}{2}x - 1$
 $x + 2y \le 2$ $y \le -\frac{1}{2}x + 1$


For 7 and 8, state three coordinates that are solutions to the system:

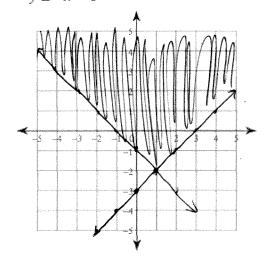
7:


8:

Sketch the solution to each system of inequalities.


1)
$$y > 4x - 3$$

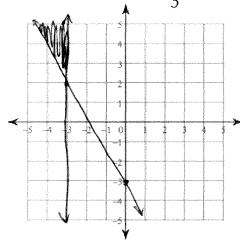
 $y \ge -2x + 3$


2)
$$y \ge -5x + 3$$

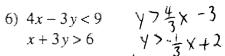
 $y > -2$

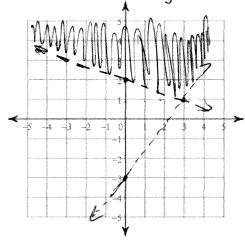
3)
$$y < 3$$

 $y \le -x + 1$


4)
$$y \ge x - 3$$

 $y \ge -x - 1$


5) $x \le -3$

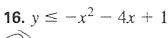

$$5x + 3y \ge -9$$

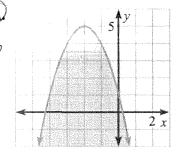
$$5x + 3y \ge -9$$
 $42 - \frac{5}{3}x - 3$

6)
$$4x - 3y < 9$$

MATCHING GRAPHS Match the inequality with its graph.

14. $y \ge x^2 - 4x + 1$




15.
$$y < x^2 - 4x + 1$$

