10.8 Working with Taylor Series

The root of everything we will be doing comes from the formula for Taylor series. Memorize it!
Let f be a function with derivatives of all orders throughout some open interval containing a. The the Taylor series that is generated by f at $x=a$ is

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

The partial sum

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

is the Taylor polynomial of order n for f at $x=a$.
When a Taylor series or polynomial is centered at $x=0$, it is called a Maclaurin series or polynomial, respectively.

Example: Write the first order Taylor polynomial for $f(x)=\sqrt[4]{x}$ about $\mathrm{x}=16$ and use it to approximate $\sqrt[4]{15}$. Is this approximation an over or under-approximation? Explain your reasoning

A Taylor polynomial is a good approximation of a function for \qquad .
A Taylor polynomial over-approximates a value if the derivative for the ending term is \qquad .

A Taylor polynomial under-approximates a value if the derivative for the ending term is \qquad .

Example: Let j be a function having derivatives of all orders for $x>0$. Selected values of j and its first four derivatives are indicated in the table below. The function j and these four derivative are increasing on the interval $1 \leq x \leq 4$.

Write the second-degree Taylor polynomial for j about $x=1$ and use it to approximate $j(1.1)$. Is this approximation greater than $j(1.1)$? Explain your reasoning.

x	$j(\mathrm{x})$	$j^{\prime}(\mathrm{x})$	$j^{\prime \prime}(\mathrm{x})$	$j^{\prime \prime \prime}(\mathrm{x})$
1	10	11	14	$151 / 10$
2	13	14	$150 / 7$	$160 / 3$
3	9	$90 / 8$	$90 / 7$	$97 / 7$
4	7	$70 / 4$	$71 / 3$	$73 / 3$

Practice: Use the table above to write the third-degree Taylor polynomial for j about $x=2$ and use it to approximate $j(1.9)$. Is this approximation greater than $j(1.9)$? Explain your reasoning.

Practice: Use the table above to write the third-degree Taylor polynomial for j about $x=3$. Is this Taylor polynomial only a good approximation of values of j near $x=3$? Explain.

Practice: Write the third order Taylor polynomial for $\ln (2-x)$ about $\mathrm{x}=1$.

Practice: Selected values of a function f and its first four derivatives are shown in the table below. What is the approximation of the value of $f(2)$ obtained by using the third degree Taylor polynomial for f about $\mathrm{x}=1$?

x	$f(\mathrm{x})$	$f^{\prime}(\mathrm{x})$	$f^{\prime \prime}(\mathrm{x})$	$f^{\prime \prime \prime}(\mathrm{x})$
1	2	-3	6	-8

Example: The third degree Taylor polynomial for a function f about $\mathrm{x}=2$ is:
$3+\frac{x-2}{3}+\frac{(x-2)^{2}}{27}+\frac{(x-2)^{3}}{243}$. What is the value of $f{ }^{\prime \prime},{ }^{\prime}(2)$?

Example: Let $P(x)=2(x-3)^{2}-7(x-3)^{3}+5(x-3)^{4}$ be the fourth degree Taylor polynomial for the function f about $\mathrm{x}=3$. What is the value of f '"'(3)?

Practice: The third degree Taylor polynomial for a function g about $\mathrm{x}=5$ is:
$-2+\frac{x-5}{2}+\frac{3(x-5)^{2}}{8}+\frac{9(x-5)^{3}}{32}$. What is the value of $g{ }^{\prime \prime}(5)$?

Practice: Let $P(x)=2-8 x^{2}+3 x^{4}-5 x^{6}$ be the sixth degree Taylor polynomial for the function f about $\mathrm{x}=0$. What is the value of $\mathrm{f}^{(4)}(0)$?

Homework

1. a) Use the definition to find the Taylor series centered at $c=1$ for $f(x)=\ln x$. Find the first four nonzero terms and then an expression for the nth term.
2. a) Use the definition to find the Maclaurin series for $f(x)=\sin 2 x$. Find the first three nonzero terms and then an expression for the nth term.
b) Can you think of a faster, more efficient method to obtain the series for $f(x)=\sin 2 x$ other than using its derivatives? Explain.
3. Use the definition to find the Taylor series centered at $c=1$ for $f(x)=\sqrt{x}$. Find only the first four nonzero terms.
4. a) Use the definition to find the Taylor series centered at $c=2$ for $f(x)=2^{x}$. Find the first four terms and then an expression for the nth term.

2003 AP ${ }^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

5. The function f has a Taylor series about $x=2$ that converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n+1)!}{3^{n}}$ for $n \geq 1$, and $f(2)=1$.
(a) Write the first four terms and the general term of the Taylor series for f about $x=2$.
(c) Let g be a function satisfying $g(2)=3$ and $g^{\prime}(x)=f(x)$ for all x. Write the first four terms and the general term of the Taylor series for g about $x=2$.
