10.8 Working with Taylor Series

The root of everything we will be doing comes from the formula for Taylor series. Memorize it!

Let *f* be a function with derivatives of all orders throughout some open interval containing *a*. The the **Taylor series** that is generated by *f* at x=a is

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k$$

The partial sum

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

is the **Taylor polynomial** of order *n* for f at x=a.

When a Taylor series or polynomial is centered at x=0, it is called a Maclaurin series or polynomial, respectively.

Example: Write the first order Taylor polynomial for $f(x) = \sqrt[4]{x}$ about x= 16 and use it to approximate $\sqrt[4]{15}$. Is this approximation an over or under-approximation? Explain your reasoning

A Taylor polynomial is a good approximation of a function for ______.

A Taylor polynomial under-approximates a value if the derivative for the ending term is_____.

UNIT 10 STUDENT PACKET

Example: Let *j* be a function having derivatives of all orders for x > 0. Selected values of *j* and its first four derivatives are indicated in the table below. The function *j* and these four derivative are increasing on the interval $1 \le x \le 4$.

Write the second-degree Taylor polynomial for *j* about x = 1 and use it to approximate *j*(1.1). Is this approximation greater than *j*(1.1)? Explain your reasoning.

X	<i>j</i> (x)	<i>j</i> '(x)	<i>j`</i> '(x)	<i>j'''</i> (x)
1	10	11	14	151/10
2	13	14	150/7	160/3
3	9	90/8	90/7	97/7
4	7	70/4	71/3	73/3

Practice: Use the table above to write the third-degree Taylor polynomial for *j* about x = 2 and use it to approximate *j*(1.9). Is this approximation greater than *j*(1.9)? Explain your reasoning.

UNIT 10 STUDENT PACKET

Practice: Use the table above to write the third-degree Taylor polynomial for *j* about x = 3. Is this Taylor polynomial only a good approximation of values of *j* near x=3? Explain.

Practice: Write the third order Taylor polynomial for $\ln (2 - x)$ about x=1.

Practice: Selected values of a function f and its first four derivatives are shown in the table below. What is the approximation of the value of f(2) obtained by using the third degree Taylor polynomial for f about x=1?

Х	$f(\mathbf{x})$	$f'(\mathbf{x})$	f"(x)	f (x)
1	2	-3	6	-8

UNIT 10 STUDENT PACKET

Example: The third degree Taylor polynomial for a function *f* about x=2 is: $3 + \frac{x-2}{3} + \frac{(x-2)^2}{27} + \frac{(x-2)^3}{243}$. What is the value of *f* ``'(2)?

Example: Let $P(x) = 2(x-3)^2 - 7(x-3)^3 + 5(x-3)^4$ be the fourth degree Taylor polynomial for the function *f* about x=3. What is the value of f ```(3)?

Practice: The third degree Taylor polynomial for a function g about x=5 is: $-2 + \frac{x-5}{2} + \frac{3(x-5)^2}{8} + \frac{9(x-5)^3}{32}$. What is the value of g ''(5)?

Practice: Let $P(x) = 2 - 8x^2 + 3x^4 - 5x^6$ be the sixth degree Taylor polynomial for the function *f* about x=0. What is the value of f⁽⁴⁾(0)?

Homework

- 1. a) Use the definition to find the Taylor series centered at c = 1 for $f(x) = \ln x$. Find the first four nonzero terms and then an expression for the nth term.
- 2. a) Use the definition to find the Maclaurin series for $f(x) = \sin 2x$. Find the first three nonzero terms and then an expression for the nth term.
 - b) Can you think of a faster, more efficient method to obtain the series for $f(x) = \sin 2x$ other than using its derivatives? Explain.
- 3. Use the definition to find the Taylor series centered at c = 1 for $f(x) = \sqrt{x}$. Find <u>only</u> the first four nonzero terms.
- 4. a) Use the definition to find the Taylor series centered at c = 2 for $f(x) = 2^x$. Find the first four terms and then an expression for the nth term.

2003 AP[®] CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

- 5. The function f has a Taylor series about x = 2 that converges to f(x) for all x in the interval of convergence. The *n*th derivative of f at x = 2 is given by $f^{(n)}(2) = \frac{(n+1)!}{2^n}$ for $n \ge 1$, and f(2) = 1.
 - (a) Write the first four terms and the general term of the Taylor series for f about x = 2.
 - (c) Let g be a function satisfying g(2) = 3 and g'(x) = f(x) for all x. Write the first four terms and the general term of the Taylor series for g about x = 2.