Station 1

Simplify each exponential expression.
24) i 19
A) -i
B) -1
C) i
D) 1
25) i^{21}
A) i
B) -1
C) 1
D) -i
26) ${ }^{14}$
A) i
B) -1
C) 1
D) -i

Graph the following numbers on the axis at the right. Label them after you graph them. You do not need to draw an arrow to the point.

1. $1+2 i$
2. $-1+2 i$
3. $2-i$
4. $-2-i$
5. 0
6. 4
7. $3 i$
8. $-3+2 i$

9. In a complex plane, the vertical axis is the imaginary axis and the horizontal axis is the real axis. Within the complex plane, a complex number $a+b i$ is comparable to the point (a, b) in the standard (x, y) coordinate plane. $\sqrt{a^{2}+b^{2}}$ is the modulus of the complex point $a+b i$. Which of the complex numbers F, G, H, J, and K below has the smallest modulus?

Find the absolute value of each complex number.

1) $|7-i|$
2) $|-5-5 i|$
3) $|-2+4 i|$
4) $|3-6 i|$
5) $|10-2 i|$
6) $|-4-8 i|$

Station 2

Find the product.

1. $(z-4)(z+4)$

Factor
5. $z^{2}-144$
6. $y^{2}+16$
2. $(z+3 i)(z-3 i)$
3. $(z+\sqrt{13})(z-\sqrt{13})$
4. $(z+\sqrt{5} i)(z-\sqrt{5} i)$

Examples

11. Solve each equation, and state the solutions.
a. $x^{2}+64=0$
b. $x^{2}+10 x+25=0$
12. Write the left side of each equation as a product of linear factors, and state the solutions.
a. $x^{3}-125=0$
b. $x^{3}+8=0$
c. $x^{4}+6 x^{2}+8=0$
d. $x^{4}+9 x^{2}+8=0$

Station 3

13. Explain how Pascal's triangle allows you to compute the coefficient of $x^{3} y^{2}$ when $(x-y)^{5}$ is expanded. What is that coefficient?
14. Explain how Pascal's triangle allows you to compute the coefficient of $x^{5} y$ when $(x+y)^{6}$ is expanded. What is that coefficient?

Simplify each expression to the form a+bi.
15. $(1-3 i)+(2+i)(1+i)$
16. $(1+i)^{3}-(1-i)^{3}$
17. $(2+i)^{4}-(2-i)^{4}$
18. Consider the expansion of $(a+b)^{7}$. Determine the coefficients for the terms with the powers of a and b shown.
a. $\quad a^{2} b^{5}$
b. $a^{6} b$
c. $\quad b^{7}$

Station 4

Sketch the graphs of each equation.

$$
\begin{gathered}
\frac{(x-3)^{2}}{4}+\frac{y^{2}}{16}=1 \\
\frac{(x-4)^{2}}{9}+(y-1)^{2}=1
\end{gathered}
$$

$$
\frac{(x-3)^{2}}{9}+\frac{(y+1)^{2}}{16}=1
$$

$$
\frac{(x+2)^{2}}{49}+\frac{(y-1)^{2}}{9}=1
$$

a. What is the center?
b. What is the semi-major axis?
c. What is the semi-minor axis?
d. Graph the ellipse.

Write the equation of the circle graphed below.
\square

Station 5

1. Given the function $f(x)=(x+1)^{2}(x-1)(x+4)^{3}$ determine the intervals on which the function is positive and negative.
2. Consider the cubic polynomial p given $p(t)=t^{3}-125$.
a. Find a real number zero/root to the polynomial by factoring.
b. Write $p(t)$ as a product of three linear terms. Then state ALL of the zeros.
3. Find all of the factors (real and complex) to the polynomial $r(x)=x^{4}-81$
4. In the expansion of the polynomial $(x+3 y)^{3}$, what is the coefficient in front of the term $x y^{2}$?
5. In the expansion of the polynomial $(2 x+4 y)^{4}$, what is the coefficient in front of the term $x^{2} y^{2}$?
