Name \qquad Date \qquad Period \qquad

Worksheet 2.6-The Chain Rule

Short Answer

Show all work, including rewriting the original problem in a more useful way. No calculator unless otherwise stated.

1. Find the derivative of the following functions with respect to the independent variable. (You do not need to simplify your final answers here.)
(a) $y=(2 x-7)^{3}$
(b) $y=\frac{1}{t^{2}+3 t-1}$
$\frac{d y}{d x}=3(2 x-7)^{2} \cdot(2)$
$y=\left(t^{2}+3 t-1\right)^{-1}$
$\frac{d y}{d t}=(-1)\left(t^{2}+3 t-1\right)^{-2} \cdot(2 t+3)$
$\frac{d y}{d t}=-\frac{2 t+3}{\left(t^{2}+3 t-1\right)^{2}}$
(c) $y=\left(\frac{1}{t-3}\right)^{2}$
$\frac{d y}{d x}=6(2 x-7)^{2}$
$y=\left((t-3)^{-1}\right)^{2}$
$\begin{aligned} y & =(t-3)^{-2} \\ \frac{d y}{d t} & =-2(t-3)^{-3} \cdot(1)\end{aligned}$ $\frac{d y}{d t}=\frac{-2}{(t-3)^{3}}$

$$
\text { (d) } \begin{aligned}
y & =\csc ^{3}\left(\frac{3 x}{2}\right) \\
y & =\left(\csc \left(\frac{3}{3} x\right)\right)^{3} \\
\frac{d y}{d x} & =3\left(\csc \left(\frac{3}{2} x\right)\right) \cdot\left(-\csc \left(\frac{3}{2} x\right) \cot \left(\frac{3}{2} x\right)\right) \cdot\left(\frac{3}{2}\right) \\
\frac{d y}{d x} & =-\frac{9}{2} \csc ^{3}\left(\frac{3}{2} x\right) \cot \left(\frac{3}{2} x\right)
\end{aligned}
$$

(e) $y=3 \sec ^{2}(\pi t-1)$
$y=3[\sec (\pi t-1)]^{2}$

$$
\begin{aligned}
& \frac{d y}{d t}=6[\sec (\pi t-1)]^{\prime} \cdot \sec (\pi t-1) \tan (\pi t-1) \cdot \pi \\
& \frac{d y}{d t}=6 \pi \sec ^{2}(\pi t-1) \tan (\pi t-1)
\end{aligned}
$$

(f) $\begin{aligned} y & =\sin \sqrt[3]{x}+\sqrt[3]{\sin x} \\ y & =\sin \left(x^{1 / 3}\right)+(\sin x)^{1 / 3}\end{aligned}$
$y=\sin \left(x^{1 / 3}\right)+(\sin x)^{1 / 3}$
$\frac{d y}{d x}=\cos \left(x^{1 / 3}\right) \cdot\left(\frac{1}{3} x^{-2 / 3}\right)+\frac{1}{3}(\sin x) \cdot(\cos x)$ $\frac{d y}{d x}=\frac{\cos \sqrt[3]{x}}{3 \sqrt[3]{x^{2}}}+\frac{\cos x}{3 \sqrt[3]{\sin ^{2} x}}$
(g) $y=x^{2} \tan \frac{1}{x}$
$y=\left(x^{2}\right)\left(\tan \left(x^{-1}\right)\right)$
$\frac{d y}{d x}=(2 x)\left(\tan \left(x^{-1}\right)\right)+\left(x^{2}\right)\left(\sec ^{2}\left(x^{-1}\right) \cdot(-1)\left(x^{-2}\right)\right)$
(h) $r=\sec (2 \theta) \tan (2 \theta)$
(i) $f(x)=\sqrt[3]{\csc ^{5} 7}$
$\frac{d r}{d \theta}=\sec 2 \theta \cdot \tan 2 \theta \cdot 2 \cdot \tan 2 \theta+\sec 2 \theta \cdot \sec ^{2} 2 \theta \cdot 2$
$\frac{d r}{d \theta}=2 \sec 2 \theta \cdot \tan ^{2} 2 \theta+2 \sec ^{3} 2 \theta$
2. Find the equation of the tangent line (in Taylor Form) for each of the following at the indicated point.
(a) $s(t)=\sqrt{t^{2}+2 t+8}$ at $x=2$
$S(t)=\left(t^{2}+2 t+8\right)^{1 / 2} \quad$ pt: $(2, S(2))=(2,4)$
(b) $f(t)=\frac{3 t+2}{t-1}$ at $(0,-2)$
$f^{\prime}(t)=\frac{(t-1)(3)-(3 t+2)(1)}{(t-1)^{2}}$
$S^{\prime}(t)=\frac{2(t+1)}{2 \sqrt{t^{2}+2 t+8}}$
$S^{\prime}(t)=\frac{t+1}{\sqrt{t^{2}+2 t+8}}$
$S^{\prime}(z)=\frac{3}{4}$
equation: $y=S(2)+S^{\prime}(2)(x-2)$

$$
y=4+\frac{3}{4}(x-2)
$$

3. Determine the points) in the interval $(0,2 \pi)$ at which the graph of $f(x)=2 \cos x+\sin 2 x$ has a horizontal tangent.

* "simplify early and often."

4. Find the second derivative of each of the following functions. Remember to simplify early and often.
(a) $f(x)=2\left(x^{2}-1\right)^{3}$

$$
f^{\prime}(x)=b\left(x^{2}-1\right)^{2}(2 x)
$$

$$
f^{\prime}(x)=12 x\left(x^{2}-1\right)^{2}
$$

$$
f^{\prime \prime}(x)=(12)\left(x^{2}-1\right)^{2}+(12 x)\left(2\left(x^{2}-1\right)^{\prime} \cdot(2 x)\right)
$$

$$
\begin{aligned}
& f(x)=(12)\left(x^{2}-12\right)^{2}+48 x^{2}\left(x^{2}-1\right) \quad \forall \text { factor out } \\
& f^{\prime \prime}(x)=12\left(x^{2}-1\right)^{2}+\text { or }
\end{aligned}
$$

$$
f^{\prime \prime}(x)=12\left(x^{2}-1\right)\left[\left(x^{2}-1\right)+4 x^{2}\right]
$$

$$
f^{\prime \prime}(x)=12\left(x^{2}-1\right)\left(5 x^{2}-1\right)
$$

$$
\text { (b) } f(x)=\sin \left(x^{2}\right)
$$

$$
f^{\prime}(x)=\cos \left(x^{2}\right) \cdot(2 x)
$$

$$
=2 x \cos \left(x^{2}\right)
$$

$$
f^{\prime \prime}(x)=2 \cos \left(x^{2}\right)+2 x\left(-\sin \left(x^{2}\right) \cdot 2 x\right)
$$

$$
\begin{aligned}
& f(x)=2 \cos x+\sin 2 x \\
& f^{\prime}(x)=-2 \sin x+2 \cos 2 x=0 \\
& f^{\prime}(x)=-2 \sin x+2\left[\cos ^{2} x-\sin ^{2} x\right]=0 \\
& f^{\prime}(x)=-2 \sin x+2 \cos ^{2} x-2 \sin ^{2} x=0 \\
& f^{\prime}(x)=-2 \sin x+2\left(1-\sin ^{2} x\right)-2 \sin ^{2} x=0 \\
& f^{\prime}(x)=-2 \sin x+2-2 \sin ^{2} x-2 \sin ^{2} x=0 \\
& f^{\prime}(x)=-4 \sin ^{2} x-2 \sin x+2=0 \\
& f^{\prime}(x)=-2\left(2 \sin ^{2} x+\sin x-1\right)=0 \\
& f^{\prime}(x)=-2(2 \sin x-1)(\sin x+1)=0 \\
& \begin{array}{cr}
2 \sin x-1=0 & \sin x+1=0 \\
\sin x=\frac{1}{2} & \sin x=-1 \\
x=\pi / 6,5 \pi / 0 & x=\frac{3 \pi}{2}
\end{array}
\end{aligned}
$$

5. If $h(x)=\tan (2 x)$, evaluate $h^{\prime \prime}(x)$ at $\left(\frac{\pi}{6}, \sqrt{3}\right)$. Simplify early and often.

$$
\begin{aligned}
h^{\prime}(x) & =\sec ^{2}(2 x) \cdot 2 \\
h^{\prime}(x) & =2 \sec ^{2}(2 x) \\
h^{\prime}(x) & =2[\sec (2 x)]^{2} \\
h^{\prime \prime}(x) & =4[\sec (2 x)]^{\prime} \cdot \sec (2 x) \tan (2 x) \cdot 2 \\
h^{\prime \prime}(x) & =8 \sec ^{2}(2 x) \tan (2 x) \\
h^{\prime \prime}\left(\frac{\pi}{6}\right) & =8\left(\sec \frac{\pi}{3}\right)^{2} \cdot \tan \left(\frac{\pi}{3}\right) \quad \frac{\pi}{3}:\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& =8(2)^{2} \cdot(\sqrt{3}) \\
& =32 \sqrt{3}
\end{aligned}
$$

6. If $g(5)=-3, g^{\prime}(5)=6, h(5)=3$, and $h^{\prime}(5)=-2$, find $f^{\prime}(5)$ (if possible) for each of the following. If it is not possible, state what additional information is required.

$$
\begin{aligned}
& \text { (a) } f(x)=\frac{g(x)}{h(x)} \\
& \text { (b) } f(x)=g(h(x)) \\
& f^{\prime}(x)=\frac{h(x) \cdot g^{\prime}(x)-g(x) \cdot h^{\prime}(x)}{h^{2}(x)} \\
& f^{\prime}(5)=\frac{h(s) \cdot g^{\prime}(5)-g(5) \cdot h^{\prime}(5)}{(h(5))^{2}} \\
& f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& f^{\prime}(5)=g^{\prime}(h(s)) \cdot h^{\prime}(s) \\
& =g^{\prime}(3) \cdot(-2) \\
& =\frac{(3)(6)-(-3)(-2)}{(3)^{2}} \\
& =\frac{18-6}{9} \\
& =\frac{12}{9} \\
& f^{\prime}(5)=\frac{4}{3} \\
& \text { (d) } f(x)=[g(x)]^{3} \\
& \text { (e) } f(x)=g(x+h(x)) \\
& \text { (f) } f(x)=(g(x)+h(x))^{-2} \\
& f^{\prime}(x)=3(g(x))^{2} \cdot g^{\prime}(x) \\
& f^{\prime}(x)=g^{\prime}(x+h(x)) \cdot\left(1+h^{\prime}(x)\right) \\
& f^{\prime}(s)=g^{\prime}(s+h(s)) \cdot\left(1+h^{\prime}(s)\right) \\
& =g^{\prime}(5+3) \cdot(1+(-2)) \\
& =g^{\prime}(8) \cdot(-1) \\
& =-g^{\prime}(8) \\
& \text { we are not given } g^{\prime}(8) \text {. } \\
& \text { So we cannot proceed with } \\
& \text { this problem, but we can and } \\
& \text { may and will proceed to a other } \\
& \text { awesome problem. } \\
& \text { (c) } f(x)=g(x) h(x) \\
& f^{\prime}(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x) \\
& f^{\prime}(5)=g^{\prime}(5) \cdot h(s)+g(5) \cdot h^{\prime}(5) \\
& =(6)(3)+(-3)(-2) \\
& =18+6 \\
& f^{\prime}(s)=24
\end{aligned}
$$

7. Find the derivative of $f(x)=\sin ^{2} x+\cos ^{2} x$ two different ways,
(a) By using the chain rule on the given expression.

$$
\begin{aligned}
& f(x)=(\sin x)^{2}+(\cos x)^{2} \\
& f^{\prime}(x)=2(\sin x)^{\prime} \cdot(\cos x)+2(\cos x)^{\prime} \cdot(-\sin x) \\
& f^{\prime}(x)=2 \sin x \cdot \cos x-2 \sin x \cdot \cos x \\
& f^{\prime}(x)=0
\end{aligned}
$$

(b) By using an identity first, then differentiating.

$$
\begin{aligned}
& f(x)=\sin ^{2} x+\cos ^{2} x \\
& f(x)=1 \quad \text { (napa P } D \text {) } \\
& f^{\prime}(x)=0
\end{aligned}
$$

(c) What's the moral of THIS story? (Hint: It is NOT "Flattery is a dangerous weapon in the hands of the enemy.")
"simplify early and often."
8. Using calculus and trig Identities, prove that if $f(x)=\tan ^{2} x$ and $g(x)=\sec ^{2} x$, then $f^{\prime}(x)=g^{\prime}(x)$.

$$
\begin{array}{rlrl}
f(x) & =(\tan x)^{2} & g(x) & =(\sec x)^{2} \\
f^{\prime}(x) & =2(\tan x)^{\prime} \cdot \sec ^{2} x & g^{\prime}(x) & =2(\sec x)^{\prime} \cdot(\sec x \tan x) \\
& =2 \sec ^{2} x \tan x & & =2 \sec ^{2} x \tan x
\end{array}
$$

9. Using the chain rule,
(a) Prove that the derivative of an odd function is an even function. That is if $f(-x)=-f(x)$, then

$$
\begin{aligned}
& f^{\prime}(-x)=f^{\prime}(x) \text {. Let } f(x) \text { be an odd function } \\
& \text { Differentiating both sides: } \\
& \frac{d}{d x}[f(-x)]=\frac{d}{d x}[-f(x)] \\
& f^{\prime}(-x) \cdot(-1)=-f^{\prime}(x) \underset{\substack{\text { tmultitily both } \\
\text { sides by } \\
-1}}{\substack{\text { and }}} \\
& f^{\prime}(-x)=f^{\prime}(x) \\
& \text { So } f^{\prime}(x) \text { is an even function. }
\end{aligned}
$$

(b) What type of function do you think the derivative of an even function is? Justify in a manner similar to part (a).

$$
\text { If } f \text { is even, } \begin{aligned}
f(-x) & =f(x) \\
\text { \&, } \frac{d}{d x}[f(-x)] & =\frac{d}{d x}[f(x)] \\
f^{\prime}(-x) \cdot(-1) & =f^{\prime}(x) \\
f^{\prime}(-x) & =-f^{\prime}(x)
\end{aligned}
$$

10. As demonstrated on the last example in the notes,
(a) Using the chain rule, prove that if $|g(x)|=\sqrt{g^{2}(x)}$ then $\frac{d}{d x}[|g(x)|]=\frac{g(x)}{|g(x)|} \cdot g^{\prime}(x), g(x) \neq 0$.
Let $f(x)=|g(x)|$

$$
\begin{aligned}
& \text { Let } f(x)=|g(x)| \\
& f(x)=\sqrt{(g(x))^{2}} \\
& f(x)=\left((g(x))^{2}\right)^{1 / 2} * \frac{d \text { dep }{ }^{2} \text { simplify }}{\text { here }} \\
& f^{\prime}(x)=\frac{1}{2}(g(x))^{2-1 / 2} \cdot 2(g(x))^{\prime} \cdot g^{\prime}(x) \\
& f^{\prime}(x)=\frac{g(x) \cdot g^{\prime}(x)}{\sqrt{g^{(x)}}{ }^{2}} \\
& f^{\prime}(x)=\frac{g(x)}{|g(x)|} \cdot g^{\prime}(x)
\end{aligned}
$$

(b) Use the result from part (a) to find $\frac{d}{d x}\left[\left|x^{2}-4\right|\right]$. , Let $g(x)=x^{2}-4, \begin{aligned} & \mid g(x) \\ & \text { So } g^{\prime}(x)=\frac{x^{2}-4}{\left|x^{2}-4\right|}(2 x)\end{aligned}$

$$
g^{\prime}(x)=\frac{2 x\left(x^{2}-4\right)}{\left|x^{2}-4\right|}
$$

11. What is the largest value possible for the slope of the curve of $y=\sin \left(\frac{x}{2}\right)$? Justify.

$$
\begin{aligned}
& y^{\prime}=\cos \left(\frac{x}{2}\right) \cdot \frac{1}{2} \\
& y^{\prime}=\frac{1}{2} \cos \left(\frac{x}{2}\right) \\
& \text { Range of } y^{\prime}:\left[-\frac{1}{2}, \frac{1}{2}\right], \text { is } \frac{1}{2} \text {. } \\
& \text { Ko max slope of } y \text { is }
\end{aligned}
$$

12. Find the equation of the normal line to the curve $y=2 \tan \left(\frac{\pi x}{4}\right)$ at $x=1$.

13. After the chain rule is applied to find the derivative of a function $F(x)$, the function $F^{\prime}(x)=f(x)=4(\cos (3 x))^{3} \cdot(-\sin (3 x)) \cdot 3$ is obtained. Give a possible function for $F(x)$. Check your work by taking the derivative of your guess using the chain rule.

$$
\begin{aligned}
& F(x) \text { could be } \\
& \begin{aligned}
F(x) & =[\cos (3 x)]^{4} \\
& =\cos ^{4}(3 x)
\end{aligned}
\end{aligned}
$$

Multiple Choice
A 14. If $f(x)=\frac{1}{\sqrt{x^{2}+3}}$, find $f^{\prime}(x)$.
(A) $f^{\prime}(x)=-\frac{x}{\sqrt{\left(x^{2}+3\right)^{3}}}$

$$
f(x)=\left(x^{2}+3\right)^{-1 / 2}
$$

(B) $f^{\prime}(x)=\frac{x}{\sqrt{x^{2}+3}}$

$$
f^{\prime}(x)=\frac{-x}{\sqrt{\left(x^{2}+3\right)^{3}}}
$$

(C) $f^{\prime}(x)=-\frac{x}{\left(x^{2}+3\right) \sqrt{2 x}}$
(D) $f^{\prime}(x)=-\frac{1}{2 \sqrt{\left(x^{2}+3\right)^{3}}}$
(E) $f^{\prime}(x)=-\frac{x^{2}+3 x}{x^{2}+3}$

C
15. If $g(x)=(1-x)^{3}(4 x+1)$, then $g^{\prime}(x)=$
(A) $-12(1-x)^{2} \quad g^{\prime}(x)=3(1-x)^{2}(-1)(4 x+1)+(1-x)^{3}(4)$
(B) $(1-x)^{2}(1+8 x) \quad g^{\prime}(x)=(1-x)^{2}[-3(4 x+1)+4(1-x)] \quad *$ factor out
(C) $(1-x)^{2}(1-16 x) \quad g^{\prime}(x)=(1-x)^{2}[-12 x-3+4-4 x]$
(D) $3(1-x)^{2}(4 x+1) g^{\prime}(x)=(1-x)^{2}(-16 x+1)$
(E) $(1-x)^{2}(16 x+7) \quad g^{\prime}(x)=(1-x)^{2}(1-16 x)$

D
(A) $\frac{10 x\left(x^{2}-3\right)^{4}\left(10 x^{2}-17\right)}{\left(5 x^{2}-9\right)^{6}}=\frac{5\left(x^{2}-3\right)^{4}\left[\left(5 x^{2}-9\right)(2 x)-(10 x)\left(x^{2}-3\right)\right]}{\left(5 x^{2}-9\right)^{4}(5 x-9)^{2}}$
(B) $\frac{-10 x\left(x^{2}-3\right)^{4}\left(5 x^{2}-16\right)}{\left(5 x^{2}-9\right)^{5}}=\frac{5\left(x^{2}-3\right)^{4}\left[2 x\left(5 x^{2}-9\right)-5\left(x^{2}-3\right)\right]}{(5 x-9)^{6}}$
(C) $\frac{-240 x\left(x^{2}-3\right)^{4}}{\left(5 x^{2}-9\right)^{6}}=\frac{5\left(x^{2}-3\right)^{4}(2 x)\left[5 x^{2}-9-5 x^{2}+15\right]}{(5 x-9)^{6}}$
(D) $\frac{60 x\left(x^{2}-3\right)^{4}}{\left(5 x^{2}-9\right)^{6}}$ $=\frac{10 x\left(x^{2}-3\right)^{4}(6)}{(5 x-9)^{6}}$
(E) $\frac{100 x\left(x^{2}-3\right)^{4}}{\left(5 x^{2}-9\right)^{6}}$

$$
=\frac{60 x\left(x^{2}-3\right)^{4}}{(5 x-9)^{6}}
$$

17. A derivative of a function $f(x)$ is obtained using the chain rule. The result is $f^{\prime}(x)=3 \sec ^{3} x \tan x$. Which of the following could be $f(x)$?
I. $f(x)=-\pi+\frac{3}{4} \sec ^{4} x \rightarrow f^{\prime}(x)=3 \sec ^{3} x \cdot \sec x \tan x=3 \sec ^{4} x \tan x$ (x)
II. $f(x)=8+\sec ^{3} x \rightarrow f^{\prime}(x)=3 \sec ^{2} x \cdot \sec x \cdot \tan x=3 \sec ^{3} x \tan x$
III. $f(x)=\sec x+\sec x \tan ^{2} x$ $f(x)=\sec x+\sec x\left(\sec ^{2} x-1\right)$
$f(x)=\sec x+\sec ^{3} x-\sec x=\sec ^{3} x \rightarrow f^{\prime}(x)=3\left(\sec ^{2} x\right) \cdot \sec x \cdot \tan x=3 \sec ^{3} x \cdot \tan x$
(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

